Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
Visualizing and Interpreting Convolutional Neural Network
Papers
Deconvolutional Networks
- paper: http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
- video: https://ipam.wistia.com/medias/zd0qnekkwc
- presentation: https://mathinstitutes.org/videos/videos/3295
Visualizing and Understanding Convolutional Network
- intro: ECCV 2014
- arxiv: http://arxiv.org/abs/1311.2901
- slides: https://courses.cs.washington.edu/courses/cse590v/14au/cse590v_dec5_DeepVis.pdf
- slides: http://videolectures.net/site/normal_dl/tag=921098/eccv2014_zeiler_convolutional_networks_01.pdf
- video: http://videolectures.net/eccv2014_zeiler_convolutional_networks/
- chs: http://blog.csdn.net/kklots/article/details/17136059
- github: https://github.com/piergiaj/caffe-deconvnet
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
- intro: ICLR 2014 workshop
- arxiv: http://arxiv.org/abs/1312.6034
- github: https://github.com/yasunorikudo/vis-cnn
Understanding Deep Image Representations by Inverting Them
deepViz: Visualizing Convolutional Neural Networks for Image Classification
- paper: http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.pdf
- github: https://github.com/bruckner/deepViz
Inverting Convolutional Networks with Convolutional Networks
Understanding Neural Networks Through Deep Visualization
- project page: http://yosinski.com/deepvis
- arxiv: http://arxiv.org/abs/1506.06579
- github: https://github.com/yosinski/deep-visualization-toolbox
Visualizing Higher-Layer Features of a Deep Network
Generative Modeling of Convolutional Neural Networks
- project page: http://www.stat.ucla.edu/~yang.lu/Project/generativeCNN/main.html
- arxiv: http://arxiv.org/abs/1412.6296
- code: http://www.stat.ucla.edu/~yang.lu/Project/generativeCNN/doc/caffe-generative.zip
Understanding Intra-Class Knowledge Inside CNN
Learning FRAME Models Using CNN Filters for Knowledge Visualization
- project page: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
- arxiv: http://arxiv.org/abs/1509.08379
- code: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/doc/code.zip
Convergent Learning: Do different neural networks learn the same representations?
- intro: ICLR 2016
- arxiv: http://arxiv.org/abs/1511.07543
- github: https://github.com/yixuanli/convergent_learning
- video: http://videolectures.net/iclr2016_yosinski_convergent_learning/
Visualizing and Understanding Deep Texture Representations
- homepage: http://vis-www.cs.umass.edu/texture/
- arxiv: http://arxiv.org/abs/1511.05197
- paper: https://people.cs.umass.edu/~smaji/papers/texture-cvpr16.pdf
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
An Interactive Node-Link Visualization of Convolutional Neural Networks
- homepage: http://scs.ryerson.ca/~aharley/vis/
- code: http://scs.ryerson.ca/~aharley/vis/source.zip
- demo: http://scs.ryerson.ca/~aharley/vis/conv/
- review: http://www.popsci.com/gaze-inside-mind-artificial-intelligence
Learning Deep Features for Discriminative Localization
- project page: http://cnnlocalization.csail.mit.edu/
- arxiv: http://arxiv.org/abs/1512.04150
- github: https://github.com/metalbubble/CAM
- blog: http://jacobcv.blogspot.com/2016/08/class-activation-maps-in-keras.html
- github: https://github.com/jacobgil/keras-cam
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
- intro: Visualization for Deep Learning workshop. ICML 2016
- arxiv: http://arxiv.org/abs/1602.03616
- homepage: http://www.evolvingai.org/nguyen-yosinski-clune-2016-multifaceted-feature
- github: https://github.com/Evolving-AI-Lab/mfv
A New Method to Visualize Deep Neural Networks
A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks
VisualBackProp: visualizing CNNs for autonomous driving
VisualBackProp: efficient visualization of CNNs
Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
- arxiv: https://arxiv.org/abs/1610.02391
- github: https://github.com/ramprs/grad-cam/
- github(Keras): https://github.com/jacobgil/keras-grad-cam
- github(TensorFlow): https://github.com/Ankush96/grad-cam.tensorflow
Grad-CAM: Why did you say that?
- intro: NIPS 2016 Workshop on Interpretable Machine Learning in Complex Systems
- intro: extended abstract version of arXiv:1610.02391
- arxiv: https://arxiv.org/abs/1611.07450
Visualizing Residual Networks
- intro: UC Berkeley CS 280 final project report
- arxiv: https://arxiv.org/abs/1701.02362
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
- intro: University of Amsterdam & Canadian Institute of Advanced Research & Vrije Universiteit Brussel
- intro: ICLR 2017
- arxiv: https://arxiv.org/abs/1702.04595
- github: https://github.com/lmzintgraf/DeepVis-PredDiff
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
- intro: Georgia Tech & Facebook
- arxiv: https://arxiv.org/abs/1704.01942
Picasso: A Neural Network Visualizer
- arxiv: https://arxiv.org/abs/1705.05627
- github: https://github.com/merantix/picasso
- blog: https://medium.com/merantix/picasso-a-free-open-source-visualizer-for-cnns-d8ed3a35cfc5
CNN Fixations: An unraveling approach to visualize the discriminative image regions
A Forward-Backward Approach for Visualizing Information Flow in Deep Networks
- intro: NIPS 2017 Symposium on Interpretable Machine Learning. Iowa State University
- arxiv: https://arxiv.org/abs/1711.06221
Using KL-divergence to focus Deep Visual Explanation
https://arxiv.org/abs/1711.06431
An Introduction to Deep Visual Explanation
- intro: NIPS 2017 - Workshop Interpreting, Explaining and Visualizing Deep Learning
- arxiv: https://arxiv.org/abs/1711.09482
Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks
https://arxiv.org/abs/1712.06302
Visualizing the Loss Landscape of Neural Nets
- intro: University of Maryland & United States Naval Academy
- arxiv: https://arxiv.org/abs/1712.09913
Visualizing Deep Similarity Networks
https://arxiv.org/abs/1901.00536
Interpreting Convolutional Neural Networks
Network Dissection: Quantifying Interpretability of Deep Visual Representations
- intro: CVPR 2017 oral. MIT
- project page: http://netdissect.csail.mit.edu/
- arxiv: https://arxiv.org/abs/1704.05796
- github: https://github.com/CSAILVision/NetDissect
Interpreting Deep Visual Representations via Network Dissection
https://arxiv.org/abs/1711.05611
Methods for Interpreting and Understanding Deep Neural Networks
- intro: Technische Universit¨at Berlin & Fraunhofer Heinrich Hertz Institute
- arxiv: https://arxiv.org/abs/1706.07979
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability
- intro: NIPS 2017. Google Brain & Uber AI Labs
- arxiv: https://arxiv.org/abs/1706.05806
- github: https://github.com/google/svcca/
- blog: https://research.googleblog.com/2017/11/interpreting-deep-neural-networks-with.html
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
- intro: Tsinghua University
- arxiv: https://arxiv.org/abs/1708.05493
Interpretable Convolutional Neural Networks
https://arxiv.org/abs/1710.00935
Interpreting Convolutional Neural Networks Through Compression
- intro: NIPS 2017 Symposium on Interpretable Machine Learning
- arxiv: https://arxiv.org/abs/1711.02329
Interpreting Deep Neural Networks
Interpreting CNNs via Decision Trees
https://arxiv.org/abs/1802.00121
Visual Interpretability for Deep Learning: a Survey
https://arxiv.org/abs/1802.00614
Interpreting Deep Classifier by Visual Distillation of Dark Knowledge
- intro: University of Edinburgh & Huawei Research America
- arxiv: https://arxiv.org/abs/1803.04042
How convolutional neural network see the world - A survey of convolutional neural network visualization methods
- intro: Mathematical Foundations of Computing. George Mason University & Clarkson University
- arxiv: https://arxiv.org/abs/1804.11191
Understanding Regularization to Visualize Convolutional Neural Networks
- intro: Konica Minolta Laboratory Europe & Technical University of Munich
- arxiv: https://arxiv.org/abs/1805.00071
Deeper Interpretability of Deep Networks
- intro: University of Glasgow & University of Oxford & University of California
- arxiv: https://arxiv.org/abs/1811.07807
Interpretable CNNs
https://arxiv.org/abs/1901.02413
Explaining AlphaGo: Interpreting Contextual Effects in Neural Networks
https://arxiv.org/abs/1901.02184
Interpretable BoW Networks for Adversarial Example Detection
https://arxiv.org/abs/1901.02229
Deep Features Analysis with Attention Networks
- intro: In AAAI-19 Workshop on Network Interpretability for Deep Learning
- arxiv: https://arxiv.org/abs/1901.10042
Understanding Neural Networks via Feature Visualization: A survey
- intro: A book chapter in an Interpretable ML book (http://www.interpretable-ml.org/book/)
- arxiv: https://arxiv.org/abs/1904.08939
Explaining Neural Networks via Perturbing Important Learned Features
https://arxiv.org/abs/1911.11081
Interpreting Adversarially Trained Convolutional Neural Networks
- intro: ICML 2019
- arxiv: https://arxiv.org/abs/1905.09797
- github: https://github.com/PKUAI26/AT-CNN
Projects
Interactive Deep Neural Net Hallucinations
- project page: http://317070.github.io/Dream/
- github: https://github.com/317070/Twitch-plays-LSD-neural-net
torch-visbox
draw_convnet: Python script for illustrating Convolutional Neural Network (ConvNet)
Caffe prototxt visualization
- intro: Recommended by Kaiming He
- github: https://github.com/ethereon/netscope
- quickstart: http://ethereon.github.io/netscope/quickstart.html
- demo: http://ethereon.github.io/netscope/#/editor
Keras Visualization Toolkit
mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models
- project page: http://vision03.csail.mit.edu/cnn_art/
- github: https://github.com/donglaiw/mNeuron
cnnvis-pytorch
- intro: visualization of CNN in PyTorch
- github: https://github.com/leelabcnbc/cnnvis-pytorch
VisualDL
- intro: A platform to visualize the deep learning process
- homepage: http://visualdl.paddlepaddle.org/
- github: https://github.com/PaddlePaddle/VisualDL
Blogs
“Visualizing GoogLeNet Classes”
http://auduno.com/post/125362849838/visualizing-googlenet-classes
Visualizing CNN architectures side by side with mxnet
How convolutional neural networks see the world: An exploration of convnet filters with Keras
- blog: http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
- github: https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
Visualizing Deep Learning with t-SNE (Tutorial and Video)
- blog: https://medium.com/@awjuliani/visualizing-deep-learning-with-t-sne-tutorial-and-video-e7c59ee4080c#.ubhijafw7
- github: https://github.com/awjuliani/3D-TSNE
Peeking inside Convnets
Visualizing Features from a Convolutional Neural Network
- blog: http://kvfrans.com/visualizing-features-from-a-convolutional-neural-network/
- github: https://github.com/kvfrans/feature-visualization
Visualizing Deep Neural Networks Classes and Features
http://ankivil.com/visualizing-deep-neural-networks-classes-and-features/
Visualizing parts of Convolutional Neural Networks using Keras and Cats
- blog: https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59#.bt6bb13dk
- github: https://github.com/erikreppel/visualizing_cnns
Visualizing convolutional neural networks
- intro: How to build convolutional neural networks from scratch w/ Tensorflow
- blog: https://www.oreilly.com/ideas/visualizing-convolutional-neural-networks
- github: https://github.com//wagonhelm/Visualizing-Convnets/
Tools
Topological Visualisation of a Convolutional Neural Network
http://terencebroad.com/convnetvis/vis.html
Visualization of Places-CNN and ImageNet CNN
- homepage: http://places.csail.mit.edu/visualizationCNN.html
- DrawCNN: http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
Visualization of a feed forward Neural Network using MNIST dataset
- homepage: http://nn-mnist.sennabaum.com/
- github: https://github.com/csenn/nn-visualizer
CNNVis: Towards Better Analysis of Deep Convolutional Neural Networks.
http://shixialiu.com/publications/cnnvis/demo/
Quiver: Interactive convnet features visualization for Keras
- homepage: https://jakebian.github.io/quiver/
- github: https://github.com/jakebian/quiver
Netron
- intro: Visualizer for deep learning and machine learning models
- github: https://github.com/lutzroeder/netron
Tracking
Learning A Deep Compact Image Representation for Visual Tracking
- intro: NIPS 2013
- intro: DLT
- project page: http://winsty.net/dlt.html
Hierarchical Convolutional Features for Visual Tracking
- intro: ICCV 2015
- project page: https://sites.google.com/site/jbhuang0604/publications/cf2
- github: https://github.com/jbhuang0604/CF2
Robust Visual Tracking via Convolutional Networks
- arxiv: http://arxiv.org/abs/1501.04505
- paper: http://kaihuazhang.net/CNT.pdf
- code: http://kaihuazhang.net/CNT_matlab.rar
Transferring Rich Feature Hierarchies for Robust Visual Tracking
- intro: SO-DLT
- arxiv: http://arxiv.org/abs/1501.04587
- slides: http://valse.mmcheng.net/ftp/20150325/RVT.pptx
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
- intro: The Winner of The VOT2015 Challenge
- keywords: Multi-Domain Network (MDNet)
- homepage: http://cvlab.postech.ac.kr/research/mdnet/
- arxiv: http://arxiv.org/abs/1510.07945
- github: https://github.com/HyeonseobNam/MDNet
RATM: Recurrent Attentive Tracking Model
Understanding and Diagnosing Visual Tracking Systems
- intro: ICCV 2015
- project page: http://winsty.net/tracker_diagnose.html
- paper: http://winsty.net/papers/diagnose.pdf
- code(Matlab): http://120.52.72.43/winsty.net/c3pr90ntcsf0/diagnose/diagnose_code.zip
Recurrently Target-Attending Tracking
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cui_Recurrently_Target-Attending_Tracking_CVPR_2016_paper.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cui_Recurrently_Target-Attending_Tracking_CVPR_2016_paper.pdf
Visual Tracking with Fully Convolutional Networks
- intro: ICCV 2015
- paper: http://202.118.75.4/lu/Paper/ICCV2015/iccv15_lijun.pdf
- github: https://github.com/scott89/FCNT
Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks
- intro: AAAI 2016
- arxiv: http://arxiv.org/abs/1602.00991
- github: https://github.com/pondruska/DeepTracking
Learning to Track at 100 FPS with Deep Regression Networks
- intro: ECCV 2015
- intro: GOTURN: Generic Object Tracking Using Regression Networks
- project page: http://davheld.github.io/GOTURN/GOTURN.html
- arxiv: http://arxiv.org/abs/1604.01802
- github: https://github.com/davheld/GOTURN
Learning by tracking: Siamese CNN for robust target association
Fully-Convolutional Siamese Networks for Object Tracking
- intro: ECCV 2016
- intro: State-of-the-art performance in arbitrary object tracking at 50-100 FPS with Fully Convolutional Siamese networks
- project page: http://www.robots.ox.ac.uk/~luca/siamese-fc.html
- arxiv: http://arxiv.org/abs/1606.09549
- github(official): https://github.com/bertinetto/siamese-fc
- github(official): https://github.com/torrvision/siamfc-tf
- valse-video: http://www.iqiyi.com/w_19ruirwrel.html#vfrm=8-8-0-1
Hedged Deep Tracking
- project page(paper+code): https://sites.google.com/site/yuankiqi/hdt
- paper: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5dWFua2lxaXxneDoxZjc2MmYwZGIzNjFhYTRl
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
- intro: ROLO is short for Recurrent YOLO, aimed at simultaneous object detection and tracking
- project page: http://guanghan.info/projects/ROLO/
- arxiv: http://arxiv.org/abs/1607.05781
- github: https://github.com/Guanghan/ROLO
Visual Tracking via Shallow and Deep Collaborative Model
Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
- intro: ECCV 2016
- intro: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate)
- keywords: Continuous Convolution Operator Tracker (C-COT)
- project page: http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/index.html
- arxiv: http://arxiv.org/abs/1608.03773
- github(MATLAB): https://github.com/martin-danelljan/Continuous-ConvOp
Unsupervised Learning from Continuous Video in a Scalable Predictive Recurrent Network
- keywords: Predictive Vision Model (PVM)
- arxiv: http://arxiv.org/abs/1607.06854
- github: https://github.com/braincorp/PVM
Modeling and Propagating CNNs in a Tree Structure for Visual Tracking
Robust Scale Adaptive Kernel Correlation Filter Tracker With Hierarchical Convolutional Features
Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks
OTB Results: visual tracker benchmark results
Convolutional Regression for Visual Tracking
Semantic tracking: Single-target tracking with inter-supervised convolutional networks
SANet: Structure-Aware Network for Visual Tracking
ECO: Efficient Convolution Operators for Tracking
- intro: CVPR 2017
- project page: http://www.cvl.isy.liu.se/research/objrec/visualtracking/ecotrack/index.html
- arxiv: https://arxiv.org/abs/1611.09224
- github: https://github.com/martin-danelljan/ECO
Dual Deep Network for Visual Tracking
Deep Motion Features for Visual Tracking
- intro: ICPR 2016. Best paper award in the “Computer Vision and Robot Vision” track
- arxiv: https://arxiv.org/abs/1612.06615
Globally Optimal Object Tracking with Fully Convolutional Networks
Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation
- arxiv: https://arxiv.org/abs/1701.00561
- bitbucket: https://bitbucket.org/xinke_wang/msdat
Tracking The Untrackable: Learning To Track Multiple Cues with Long-Term Dependencies
Large Margin Object Tracking with Circulant Feature Maps
- intro: CVPR 2017
- intro: The experimental results demonstrate that the proposed tracker performs superiorly against several state-of-the-art algorithms on the challenging benchmark sequences while runs at speed in excess of 80 frames per secon
- arxiv: https://arxiv.org/abs/1703.05020
- notes: https://zhuanlan.zhihu.com/p/25761718
DCFNet: Discriminant Correlation Filters Network for Visual Tracking
End-to-end representation learning for Correlation Filter based tracking
- intro: CVPR 2017. University of Oxford
- intro: Training a Correlation Filter end-to-end allows lightweight networks of 2 layers (600 kB) to achieve state-of-the-art performance in tracking, at high-speed.
- project page: http://www.robots.ox.ac.uk/~luca/cfnet.html
- arxiv: https://arxiv.org/abs/1704.06036
- gtihub: https://github.com/bertinetto/cfnet
Context-Aware Correlation Filter Tracking
- intro: CVPR 2017 Oral
- project page: https://ivul.kaust.edu.sa/Pages/pub-ca-cf-tracking.aspx
- paper: https://ivul.kaust.edu.sa/Documents/Publications/2017/Context-Aware%20Correlation%20Filter%20Tracking.pdf
- github: https://github.com/thias15/Context-Aware-CF-Tracking
Robust Multi-view Pedestrian Tracking Using Neural Networks
https://arxiv.org/abs/1704.06370
Re3 : Real-Time Recurrent Regression Networks for Object Tracking
- intro: University of Washington
- arxiv: https://arxiv.org/abs/1705.06368
- demo: https://www.youtube.com/watch?v=PC0txGaYz2I
Robust Tracking Using Region Proposal Networks
https://arxiv.org/abs/1705.10447
Hierarchical Attentive Recurrent Tracking
- intro: NIPS 2017. University of Oxford
- arxiv: https://arxiv.org/abs/1706.09262
- github: https://github.com/akosiorek/hart
- results: https://youtu.be/Vvkjm0FRGSs
Siamese Learning Visual Tracking: A Survey
https://arxiv.org/abs/1707.00569
Robust Visual Tracking via Hierarchical Convolutional Features
- project page: https://sites.google.com/site/chaoma99/hcft-tracking
- arxiv: https://arxiv.org/abs/1707.03816
- github: https://github.com/chaoma99/HCFTstar
CREST: Convolutional Residual Learning for Visual Tracking
- intro: ICCV 2017
- project page: http://www.cs.cityu.edu.hk/~yibisong/iccv17/index.html
- arxiv: https://arxiv.org/abs/1708.00225
- github: https://github.com/ybsong00/CREST-Release
Learning Policies for Adaptive Tracking with Deep Feature Cascades
- intro: ICCV 2017 Spotlight
- arxiv: https://arxiv.org/abs/1708.02973
Recurrent Filter Learning for Visual Tracking
- intro: ICCV 2017 Workshop on VOT
- arxiv: https://arxiv.org/abs/1708.03874
Correlation Filters with Weighted Convolution Responses
- intro: ICCV 2017 workshop. 5th visual object tracking(VOT) tracker CFWCR
- paper: http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w28/He_Correlation_Filters_With_ICCV_2017_paper.pdf
- github: https://github.com/he010103/CFWCR
Semantic Texture for Robust Dense Tracking
https://arxiv.org/abs/1708.08844
Learning Multi-frame Visual Representation for Joint Detection and Tracking of Small Objects
Differentiating Objects by Motion: Joint Detection and Tracking of Small Flying Objects
https://arxiv.org/abs/1709.04666
Tracking Persons-of-Interest via Unsupervised Representation Adaptation
- intro: Northwestern Polytechnical University & Virginia Tech & Hanyang University
- keywords: Multi-face tracking
- project page: http://vllab1.ucmerced.edu/~szhang/FaceTracking/
- arxiv: https://arxiv.org/abs/1710.02139
End-to-end Flow Correlation Tracking with Spatial-temporal Attention
https://arxiv.org/abs/1711.01124
UCT: Learning Unified Convolutional Networks for Real-time Visual Tracking
- intro: ICCV 2017 Workshops
- arxiv: https://arxiv.org/abs/1711.04661
Pixel-wise object tracking
https://arxiv.org/abs/1711.07377
MAVOT: Memory-Augmented Video Object Tracking
https://arxiv.org/abs/1711.09414
Learning Hierarchical Features for Visual Object Tracking with Recursive Neural Networks
https://arxiv.org/abs/1801.02021
Parallel Tracking and Verifying
https://arxiv.org/abs/1801.10496
Saliency-Enhanced Robust Visual Tracking
https://arxiv.org/abs/1802.02783
A Twofold Siamese Network for Real-Time Object Tracking
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1802.08817
Learning Dynamic Memory Networks for Object Tracking
https://arxiv.org/abs/1803.07268
Context-aware Deep Feature Compression for High-speed Visual Tracking
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1803.10537
VITAL: VIsual Tracking via Adversarial Learning
- intro: CVPR 2018 Spotlight
- arixv: https://arxiv.org/abs/1804.04273
Unveiling the Power of Deep Tracking
https://arxiv.org/abs/1804.06833
A Novel Low-cost FPGA-based Real-time Object Tracking System
- intro: ASICON 2017
- arxiv: https://arxiv.org/abs/1804.05535
MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection
https://arxiv.org/abs/1805.00107
Information-Maximizing Sampling to Promote Tracking-by-Detection
https://arxiv.org/abs/1806.02523
Instance Segmentation and Tracking with Cosine Embeddings and Recurrent Hourglass Networks
- intro: MICCAI 2018
- arxiv: https://arxiv.org/abs/1806.02070
Stochastic Channel Decorrelation Network and Its Application to Visual Tracking
https://arxiv.org/abs/1807.01103
Fast Dynamic Convolutional Neural Networks for Visual Tracking
https://arxiv.org/abs/1807.03132
DeepTAM: Deep Tracking and Mapping
https://arxiv.org/abs/1808.01900
Distractor-aware Siamese Networks for Visual Object Tracking
- intro: ECCV 2018
- keywords: DaSiamRPN
- arxiv: https://arxiv.org/abs/1808.06048
- github: https://github.com/foolwood/DaSiamRPN
Multi-Branch Siamese Networks with Online Selection for Object Tracking
- intro: ISVC 2018 oral
- arxiv: https://arxiv.org/abs/1808.07349
Real-Time MDNet
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1808.08834
Towards a Better Match in Siamese Network Based Visual Object Tracker
- intro: ECCV Visual Object Tracking Challenge Workshop VOT2018
- arxiv: https://arxiv.org/abs/1809.01368
DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model for Object Tracking
- intro: ISVC 2018
- arxiv: https://arxiv.org/abs/1809.02714
Deformable Object Tracking with Gated Fusion
https://arxiv.org/abs/1809.10417
Deep Attentive Tracking via Reciprocative Learning
- intro: NIPS 2018
- project page: https://ybsong00.github.io/nips18_tracking/index
- arxiv: https://arxiv.org/abs/1810.03851
- github: https://github.com/shipubupt/NIPS2018
Online Visual Robot Tracking and Identification using Deep LSTM Networks
- intro: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017. IROS RoboCup Best Paper Award
- arxiv: https://arxiv.org/abs/1810.04941
Detect or Track: Towards Cost-Effective Video Object Detection/Tracking
- intro: AAAI 2019
- arxiv: https://arxiv.org/abs/1811.05340
Deep Siamese Networks with Bayesian non-Parametrics for Video Object Tracking
https://arxiv.org/abs/1811.07386
Fast Online Object Tracking and Segmentation: A Unifying Approach
- intro: CVPR 2019
- preject page: http://www.robots.ox.ac.uk/~qwang/SiamMask/
- arxiv: https://arxiv.org/abs/1812.05050
- github: https://github.com/foolwood/SiamMask
Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking
- intro: Temple University
- arxiv: https://arxiv.org/abs/1812.06148
Handcrafted and Deep Trackers: A Review of Recent Object Tracking Approaches
https://arxiv.org/abs/1812.07368
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
https://arxiv.org/abs/1812.11703
Deeper and Wider Siamese Networks for Real-Time Visual Tracking
https://arxiv.org/abs/1901.01660
SiamVGG: Visual Tracking using Deeper Siamese Networks
https://arxiv.org/abs/1902.02804
TrackNet: Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis
https://arxiv.org/abs/1902.01466
Target-Aware Deep Tracking
- intro: CVPR 2019
- intro: 1Harbin Institute of Technology & Shanghai Jiao Tong University & Tencent AI Lab & University of California & Google Cloud AI
- arxiv: https://arxiv.org/abs/1904.01772
Unsupervised Deep Tracking
- intro: CVPR 2019
- intro: USTC & Tencent AI Lab & Shanghai Jiao Tong University
- arxiv: https://arxiv.org/abs/1904.01828
- github: https://github.com/594422814/UDT
- github: https://github.com/594422814/UDT_pytorch
Generic Multiview Visual Tracking
https://arxiv.org/abs/1904.02553
SPM-Tracker: Series-Parallel Matching for Real-Time Visual Object Tracking
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1904.04452
A Strong Feature Representation for Siamese Network Tracker
https://arxiv.org/abs/1907.07880
Visual Tracking via Dynamic Memory Networks
- intro: TPAMI 2019
- arxiv: https://arxiv.org/abs/1907.07613
Multi-Adapter RGBT Tracking
Teacher-Students Knowledge Distillation for Siamese Trackers
https://arxiv.org/abs/1907.10586
Tell Me What to Track
- intro: Boston University & Horizon Robotics & University of Chinese Academy of Sciences
- arxiv: https://arxiv.org/abs/1907.11751
Learning to Track Any Object
- intro: ICCV 2019 Holistic Video Understanding workshop
- arxiv: https://arxiv.org/abs/1910.11844
ROI Pooled Correlation Filters for Visual Tracking
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1911.01668
D3S – A Discriminative Single Shot Segmentation Tracker
- intro: CVPR 2020
- arxiv: https://arxiv.org/abs/1911.08862
- github(PyTorch): https://github.com/alanlukezic/d3s
Visual Tracking by TridentAlign and Context Embedding
Transformer Tracking
- intro: CVPR 2021
- intro: Dalian University of Technology & Peng Cheng Laboratory & Remark AI
- arxiv: https://arxiv.org/abs/2103.15436
- github: https://github.com/chenxin-dlut/TransT
Face Tracking
Mobile Face Tracking: A Survey and Benchmark
https://arxiv.org/abs/1805.09749
Multi-Object Tracking (MOT)
Simple Online and Realtime Tracking
- intro: ICIP 2016
- arxiv: https://arxiv.org/abs/1602.00763
- github: https://github.com/abewley/sort
Simple Online and Realtime Tracking with a Deep Association Metric
- intro: ICIP 2017
- arxiv: https://arxiv.org/abs/1703.07402
- mot challenge: https://motchallenge.net/tracker/DeepSORT_2
- github(official, Python): https://github.com/nwojke/deep_sort
- github(C++): https://github.com/oylz/ds
StrongSORT: Make DeepSORT Great Again
- intro: Beijing University of Posts and Telecommunications & Xidian University
- arxiv: https://arxiv.org/abs/2202.13514
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
- intro: Carnegie Mellon University & The Chinese University of Hong Kong & Shanghai AI Laboratory
- arxiv: https://arxiv.org/abs/2203.14360
- github: https://github.com/noahcao/OC_SORT
BoT-SORT: Robust Associations Multi-Pedestrian Tracking
- intro: Tel-Aviv University
- arxiv: https://arxiv.org/abs/2206.14651
Virtual Worlds as Proxy for Multi-Object Tracking Analysis
- arxiv: http://arxiv.org/abs/1605.06457
- dataset(Virtual KITTI): http://www.xrce.xerox.com/Research-Development/Computer-Vision/Proxy-Virtual-Worlds
Multi-Class Multi-Object Tracking using Changing Point Detection
- intro: changing point detection, entity transition, object detection from video, convolutional neural network
- arxiv: http://arxiv.org/abs/1608.08434
POI: Multiple Object Tracking with High Performance Detection and Appearance Feature
- intro: ECCV workshop BMTT 2016. Sensetime
- keywords: KDNT
- arxiv: https://arxiv.org/abs/1610.06136
Multiple Object Tracking: A Literature Review
- intro: last revised 22 May 2017 (this version, v4)
- arxiv: https://arxiv.org/abs/1409.7618
Deep Network Flow for Multi-Object Tracking
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1706.08482
Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism
https://arxiv.org/abs/1708.02843
Recurrent Autoregressive Networks for Online Multi-Object Tracking
https://arxiv.org/abs/1711.02741
SOT for MOT
- intro: Tsinghua University & Megvii Inc. (Face++)
- arxiv: https://arxiv.org/abs/1712.01059
Multi-Target, Multi-Camera Tracking by Hierarchical Clustering: Recent Progress on DukeMTMC Project
https://arxiv.org/abs/1712.09531
Multiple Target Tracking by Learning Feature Representation and Distance Metric Jointly
https://arxiv.org/abs/1802.03252
Tracking Noisy Targets: A Review of Recent Object Tracking Approaches
https://arxiv.org/abs/1802.03098
Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking
- intro: University of Florida
- arxiv: https://arxiv.org/abs/1802.06897
Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World
- intro: University of Modena and Reggio Emilia
- arxiv: https://arxiv.org/abs/1803.08319
Features for Multi-Target Multi-Camera Tracking and Re-Identification
- intro: CVPR 2018 spotlight
- intro: https://arxiv.org/abs/1803.10859
High Performance Visual Tracking with Siamese Region Proposal Network
- intro: CVPR 2018 spotlight
- keywords: SiamRPN
- paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf
- slides: https://drive.google.com/file/d/1OGIOUqANvYfZjRoQfpiDqhPQtOvPCpdq/view
Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking
- intro: Peking University
- arxiv: https://arxiv.org/abs/1804.04555
Automatic Adaptation of Person Association for Multiview Tracking in Group Activities
- intro: Carnegie Mellon University & Argo AI & Adobe Research
- project page: http://www.cs.cmu.edu/~ILIM/projects/IM/Association4Tracking/
- arxiv: https://arxiv.org/abs/1805.08717
Improving Online Multiple Object tracking with Deep Metric Learning
https://arxiv.org/abs/1806.07592
Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking
- intro: Tsinghua Univeristy & Horizon Robotics
- arxiv: https://arxiv.org/abs/1808.01562
Multiple Object Tracking in Urban Traffic Scenes with a Multiclass Object Detector
- intro: 13th International Symposium on Visual Computing (ISVC)
- arxiv: https://arxiv.org/abs/1809.02073
Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers
https://arxiv.org/abs/1809.03137
Deep Affinity Network for Multiple Object Tracking
- intro: IEEE TPAMI 2018
- arxiv: https://arxiv.org/abs/1810.11780
- github: https://github.com/shijieS/SST
Exploit the Connectivity: Multi-Object Tracking with TrackletNet
https://arxiv.org/abs/1811.07258
Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification
- intro: Sensetime Group Limited & Beihang University & The University of Sydney
- arxiv: https://arxiv.org/abs/1901.06129
Online Multi-Object Tracking with Dual Matching Attention Networks
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1902.00749
Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment
https://arxiv.org/abs/1902.08231
Tracking without bells and whistles
- intro: Technical University of Munich
- keywords: Tracktor
- arxiv: https://arxiv.org/abs/1903.05625
- github: https://github.com/phil-bergmann/tracking_wo_bnw
Spatial-Temporal Relation Networks for Multi-Object Tracking
- intro: Hong Kong University of Science and Technology & Tsinghua University & MSRA
- arxiv: https://arxiv.org/abs/1904.11489
Fooling Detection Alone is Not Enough: First Adversarial Attack against Multiple Object Tracking
- intro: Baidu X-Lab & UC Irvine
- arxiv: https://arxiv.org/abs/1905.11026
State-aware Re-identification Feature for Multi-target Multi-camera Tracking
- intro: CVPR-2019 TRMTMCT Workshop
- intro: BUPT & Chinese Academy of Sciences & Horizon Robotics
- arxiv: https://arxiv.org/abs/1906.01357
DeepMOT: A Differentiable Framework for Training Multiple Object Trackers
- intro: Inria
- keywords: deep Hungarian network (DHN)
- arxiv: https://arxiv.org/abs/1906.06618
- gitlab: https://gitlab.inria.fr/yixu/deepmot
Graph Neural Based End-to-end Data Association Framework for Online Multiple-Object Tracking
- intro: Beihang University && Inception Institute of Artificial Intelligence
- arxiv: https://arxiv.org/abs/1907.05315
End-to-End Learning Deep CRF models for Multi-Object Tracking
https://arxiv.org/abs/1907.12176
End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction with Relational Reasoning
- intro: University of Oxford
- arxiv: https://arxiv.org/abs/1907.12887
Robust Multi-Modality Multi-Object Tracking
- intro: ICCV 2019
- keywords: LiDAR
- arxiv: https://arxiv.org/abs/1909.03850
- github: https://github.com/ZwwWayne/mmMOT
Learning Multi-Object Tracking and Segmentation from Automatic Annotations
https://arxiv.org/abs/1912.02096
Learning a Neural Solver for Multiple Object Tracking
- intro: Technical University of Munich
- keywords: Message Passing Networks (MPNs)
- arxiv: https://arxiv.org/abs/1912.07515
- github: https://github.com/dvl-tum/mot_neural_solver
Multi-object Tracking via End-to-end Tracklet Searching and Ranking
- intro: Horizon Robotics Inc
- arxiv: https://arxiv.org/abs/2003.02795
Refinements in Motion and Appearance for Online Multi-Object Tracking
https://arxiv.org/abs/2003.07177
A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
- intro: CVPR 2020
- arxiv: https://arxiv.org/abs/2003.11291
- github: https://github.com/yinjunbo/UMA-MOT
A Simple Baseline for Multi-Object Tracking
- intro: Microsoft Research Asia
- arxiv: https://arxiv.org/abs/2004.01888
- github: https://github.com/ifzhang/FairMOT
MOPT: Multi-Object Panoptic Tracking
- intro: University of Freiburg
- arxiv: https://arxiv.org/abs/2004.08189
SQE: a Self Quality Evaluation Metric for Parameters Optimization in Multi-Object Tracking
- intro: Tsinghua University & Megvii Inc
- arxiv: https://arxiv.org/abs/2004.07472
Multi-Object Tracking with Siamese Track-RCNN
- intro: Amazon Web Service (AWS) Rekognition
- arixv: https://arxiv.org/abs/2004.07786
TubeTK: Adopting Tubes to Track Multi-Object in a One-Step Training Model
- intro: CVPR 2020 oral
- arxiv: https://arxiv.org/abs/2006.05683
- github: https://github.com/BoPang1996/TubeTK
Quasi-Dense Similarity Learning for Multiple Object Tracking
- intro: CVPR 2021 oral
- intro: Zhejiang University & Georgia Institute of Technology & ETH Zürich & Stanford University & UC Berkeley
- project page: https://www.vis.xyz/pub/qdtrack/
- arxiv: https://arxiv.org/abs/2006.06664
- github: https://github.com/SysCV/qdtrack
imultaneous Detection and Tracking with Motion Modelling for Multiple Object Tracking
- intro: ECCV 2020
- arxiv: https://arxiv.org/abs/2008.08826
- github: https://github.com/shijieS/DMMN
MAT: Motion-Aware Multi-Object Tracking
https://arxiv.org/abs/2009.04794
SAMOT: Switcher-Aware Multi-Object Tracking and Still Another MOT Measure
https://arxiv.org/abs/2009.10338
GCNNMatch: Graph Convolutional Neural Networks for Multi-Object Tracking via Sinkhorn Normalization
- intro: Virginia Tech
- arxiv: https://arxiv.org/abs/2010.00067
Rethinking the competition between detection and ReID in Multi-Object Tracking
- intro: University of Electronic Science and Technology of China(UESTC) & Chinese Academy of Sciences
- arxiv: https://arxiv.org/abs/2010.12138
GMOT-40: A Benchmark for Generic Multiple Object Tracking
- intro: Temple University & Stony Brook University & Microsoft
- arxiv: https://arxiv.org/abs/2011.11858
Multi-object Tracking with a Hierarchical Single-branch Network
https://arxiv.org/abs/2101.01984
Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking
- intro: Georgia Institute of Technology & Oregon State University
- arxiv: https://arxiv.org/abs/2101.12159
Learning a Proposal Classifier for Multiple Object Tracking
- intro: CVPR 2021 poster
- arxiv: https://arxiv.org/abs/2103.07889
- github: https://github.com/daip13/LPC_MOT
Track to Detect and Segment: An Online Multi-Object Tracker
- intro: CVPR 2021
- intro: SUNY Buffalo & TJU & Horizon Robotics
- project page: https://jialianwu.com/projects/TraDeS.html
- arxiv: https://arxiv.org/abs/2103.08808
Learnable Graph Matching: Incorporating Graph Partitioning with Deep Feature Learning for Multiple Object Tracking
- intro: CVPR 2021
- arxiv: https://arxiv.org/abs/2103.16178
- github: https://github.com/jiaweihe1996/GMTracker
Multiple Object Tracking with Correlation Learning
- intro: CVPR 2021
- intro: Machine Intelligence Technology Lab, Alibaba Group
- arxiv: https://arxiv.org/abs/2104.03541
ByteTrack: Multi-Object Tracking by Associating Every Detection Box
- intro: Huazhong University of Science and Technology & The University of Hong Kong & ByteDance
- arxiv: https://arxiv.org/abs/2110.06864
- github: https://github.com/ifzhang/ByteTrack
SiamMOT: Siamese Multi-Object Tracking
- intro: Amazon Web Services (AWS)
- arxiv: https://arxiv.org/abs/2105.11595
- github: https://github.com/amazon-research/siam-mot
Synthetic Data Are as Good as the Real for Association Knowledge Learning in Multi-object Tracking
- arxiv: https://arxiv.org/abs/2106.16100
- github: https://github.com/liuyvchi/MOTX
Track to Detect and Segment: An Online Multi-Object Tracker
- intro: CVPR 2021
- intro: SUNY Buffalo & TJU & Horizon Robotics
- project page: https://jialianwu.com/projects/TraDeS.html
- arxiv: https://arxiv.org/abs/2103.08808
- github: https://github.com/JialianW/TraDeS
Learning of Global Objective for Network Flow in Multi-Object Tracking
- intro: CVPR 2022
- intro: Rochester Institute of Technology & Monash University
- arxiv: https://arxiv.org/abs/2203.16210
MeMOT: Multi-Object Tracking with Memory
- intro: CVPR 2022 Oral
- arxiv: https://arxiv.org/abs/2203.16761
TR-MOT: Multi-Object Tracking by Reference
- intro: University of Washington & Beihang University & SenseTime Research
- arxiv: https://arxiv.org/abs/2203.16621
Towards Grand Unification of Object Tracking
- intro: ECCV 2022 Oral
- intro: Dalian University of Technology & ByteDance & The University of Hong Kong
- arxiv: https://arxiv.org/abs/2207.07078
- github: https://github.com/MasterBin-IIAU/Unicorn
Tracking Every Thing in the Wild
- intro: ECCV 2022
- intro: Computer Vision Lab, ETH Zürich
- project page: https://www.vis.xyz/pub/tet/
- arxiv: https://arxiv.org/abs/2207.12978
- github: https://github.com/SysCV/tet
Transformer
TransTrack: Multiple-Object Tracking with Transformer
- intro: The University of Hong Kong & ByteDance AI Lab & Tongji University & Carnegie Mellon University & Nanyang Technological University
- arxiv: https://arxiv.org/abs/2012.15460
- github: https://github.com/PeizeSun/TransTrack
TrackFormer: Multi-Object Tracking with Transformers
- intro: Technical University of Munich & Facebook AI Research (FAIR)
- arxiv: https://arxiv.org/abs/2101.02702
TransCenter: Transformers with Dense Queries for Multiple-Object Tracking
- intro: Inria & MIT & MIT-IBM Watson AI Lab
- arxiv: https://arxiv.org/abs/2103.15145
Looking Beyond Two Frames: End-to-End Multi-Object Tracking UsingSpatial and Temporal Transformers
- intro: Monash University & The University of Adelaide & Australian Centre for Robotic Vision
- arixiv: https://arxiv.org/abs/2103.14829
TransMOT: Spatial-Temporal Graph Transformer for Multiple Object Tracking
- intro: Microsoft & StonyBrook University
- arxiv: https://arxiv.org/abs/2104.00194
MOTR: End-to-End Multiple-Object Tracking with TRansformer
- intro: MEGVII Technology
- arxiv: https://arxiv.org/abs/2105.03247
- github: https://github.com/megvii-model/MOTR
Global Tracking Transformers
- intro: CVPR 2022
- intro: The University of Texas at Austin & Apple
- arxiv: https://arxiv.org/abs/2203.13250
- github: https://github.com/xingyizhou/GTR
Multiple People Tracking
Multi-Person Tracking by Multicut and Deep Matching
- intro: Max Planck Institute for Informatics
- arxiv: http://arxiv.org/abs/1608.05404
Joint Flow: Temporal Flow Fields for Multi Person Tracking
- intro: University of Bonn
- arxiv: https://arxiv.org/abs/1805.04596
Multiple People Tracking by Lifted Multicut and Person Re-identification
- intro: CVPR 2017
- intro: Max Planck Institute for Informatics & Max Planck Institute for Intelligent Systems
- paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Tang_Multiple_People_Tracking_CVPR_2017_paper.pdf
- code: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/people-detection-pose-estimation-and-tracking/multiple-people-tracking-with-lifted-multicut-and-person-re-identification/
Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking
- intro: WACV 2018
- intro: Queensland University of Technology (QUT)
- arxiv: https://arxiv.org/abs/1803.03347
Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification
- intro: ICME 2018
- arxiv: https://arxiv.org/abs/1809.04427
- github: https://github.com/longcw/MOTDT
Deep Person Re-identification for Probabilistic Data Association in Multiple Pedestrian Tracking
https://arxiv.org/abs/1810.08565
Multiple People Tracking Using Hierarchical Deep Tracklet Re-identification
https://arxiv.org/abs/1811.04091
Multi-person Articulated Tracking with Spatial and Temporal Embeddings
- intro: CVPR 2019
- intro: SenseTime Research & The University of Sydney & SenseTime Computer Vision Research Group
- arxiv: https://arxiv.org/abs/1903.09214
Instance-Aware Representation Learning and Association for Online Multi-Person Tracking
- intro: Pattern Recognition
- intro: Sun Yat-sen University & Guangdong University of Foreign Studies & Carnegie Mellon University & University of California & Guilin University of Electronic Technology & WINNER Technology
- arxiv: https://arxiv.org/abs/1905.12409
Online Multiple Pedestrian Tracking using Deep Temporal Appearance Matching Association
- intro: 2nd ranked tracker of the MOTChallenge on CVPR19 workshop
- arxiv: https://arxiv.org/abs/1907.00831
Detecting Invisible People
- intro: Carnegie Mellon University & Argo AI
- project page: http://www.cs.cmu.edu/~tkhurana/invisible.htm
- arxiv: https://arxiv.org/abs/2012.08419
MOTS
MOTS: Multi-Object Tracking and Segmentation
- intro: CVPR 2019
- intro: RWTH Aachen University
- keywords: TrackR-CNN
- project page: https://www.vision.rwth-aachen.de/page/mots
- arxiv: https://arxiv.org/abs/1902.03604
- github(official): https://github.com/VisualComputingInstitute/TrackR-CNN
Segment as Points for Efficient Online Multi-Object Tracking and Segmentation
- intro: ECCV 2020 oral
- intro: PointTrack
- arxiv: https://arxiv.org/abs/2007.01550
- github: https://github.com/detectRecog/PointTrack
PointTrack++ for Effective Online Multi-Object Tracking and Segmentation
- intro: CVPR2020 MOTS Challenge Winner. PointTrack++ ranks first on KITTI MOTS
- arxiv: https://arxiv.org/abs/2007.01549
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation
- intro: NeurIPS 2021 Spotlight
- intro: ETH Zürich & HKUST & Kuaishou Technology
- keywords: Prototypical Cross-Attention Networks (PCAN)
- project page: https://www.vis.xyz/pub/pcan/
- arxiv: https://arxiv.org/abs/2106.11958
- github: https://github.com/SysCV/pcan
- youtube: https://www.youtube.com/watch?v=hhAC2H0fmP8
- bilibili: https://www.bilibili.com/video/av593811548
- zhihu: https://zhuanlan.zhihu.com/p/445457150
Multi-Object Tracking and Segmentation with a Space-Time Memory Network
- intro: Polytechnique Montreal
- project page: http://www.mehdimiah.com/mentos+
- arxiv: https://arxiv.org/abs/2110.11284
Multi-target multi-camera tracking (MTMCT)
Traffic-Aware Multi-Camera Tracking of Vehicles Based on ReID and Camera Link Model
- intro: ACMMM 2020
- arxiv: https://arxiv.org/abs/2008.09785
3D MOT
A Baseline for 3D Multi-Object Tracking
Probabilistic 3D Multi-Object Tracking for Autonomous Driving
- intro: NeurIPS 2019
- intro: 1st Place Award, NuScenes Tracking Challenge
- intro: Stanford University $ Toyota Research Institute
- arxiv: https://arxiv.org/abs/2001.05673
- github: https://github.com/eddyhkchiu/mahalanobis_3d_multi_object_tracking
JRMOT: A Real-Time 3D Multi-Object Tracker and a New Large-Scale Dataset
- intro: Stanford University
- arxiv: https://arxiv.org/abs/2002.08397
- github: https://github.com/StanfordVL/JRMOT_ROS
Real-time 3D Deep Multi-Camera Tracking
- intro: Microsoft Cloud & AI
- arxiv: https://arxiv.org/abs/2003.11753
P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds
- intro: CVPR 2020 oral
- intro: Huazhong University of Science and Technology
- arxiv: https://arxiv.org/abs/2005.13888
- github: https://github.com/HaozheQi/P2B
PnPNet: End-to-End Perception and Prediction with Tracking in the Loop
- intro: CVPR 2020
- intro: Uber Advanced Technologies Group & University of Toronto
- arxiv: https://arxiv.org/abs/2005.14711
GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking with Multi-Feature Learning
- intro: CVPR 2020
- intro: Carnegie Mellon University
- arxiv: https://arxiv.org/abs/2006.07327
- github(official, PyTorch): https://github.com/xinshuoweng/GNN3DMOT
1st Place Solutions for Waymo Open Dataset Challenges – 2D and 3D Tracking
- intro: Horizon Robotics Inc.
- arxiv: https://arxiv.org/abs/2006.15506
Graph Neural Networks for 3D Multi-Object Tracking
- intro: ECCV 2020 workshop
- intro: Robotics Institute, Carnegie Mellon University
- project page: http://www.xinshuoweng.com/projects/GNN3DMOT/
- arxiv: https://arxiv.org/abs/2008.09506
- github: https://github.com/xinshuoweng/GNN3DMOT
Learnable Online Graph Representations for 3D Multi-Object Tracking
https://arxiv.org/abs/2104.11747
SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking
- intro: UIUC & TuSimple
- arxiv: https://arxiv.org/abs/2111.09621
- github: https://github.com/TuSimple/SimpleTrack
Immortal Tracker: Tracklet Never Dies
- intro: University of Chinese Academy of Sciences & Tusimple & CASIA & UIUC
- arxiv: https://arxiv.org/abs/2111.13672
- github: https://github.com/ImmortalTracker/ImmortalTracker
Single Stage Joint Detection and Tracking
Bridging the Gap Between Detection and Tracking: A Unified Approach
- intro: ICCV 2019
- paper: https://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_Bridging_the_Gap_Between_Detection_and_Tracking_A_Unified_Approach_ICCV_2019_paper.pdf
Towards Real-Time Multi-Object Tracking
- intro: Tsinghua University & Austrilian National University
- arxiv: https://arxiv.org/abs/1909.12605
- github: https://github.com/Zhongdao/Towards-Realtime-MOT
RetinaTrack: Online Single Stage Joint Detection and Tracking
- intro: CVPR 2020
- intro: Google
- arxiv: https://arxiv.org/abs/2003.13870
Tracking Objects as Points
- intro: UT Austin & Intel Labs
- intro: Simultaneous object detection and tracking using center points.
- keywords: CenterTrack
- arxiv: https://arxiv.org/abs/2004.01177
- github: https://github.com/xingyizhou/CenterTrack
Fully Convolutional Online Tracking
- intro: Nanjing University
- arxiv: https://arxiv.org/abs/2004.07109
- github(official, PyTorch): https://github.com/MCG-NJU/FCOT
Accurate Anchor Free Tracking
- intro: Tongji University & UCLA
- keywords: Anchor Free Siamese Network (AFSN)
- arxiv: https://arxiv.org/abs/2006.07560
Ocean: Object-aware Anchor-free Tracking
- intro: ECCV 2020
- intro: NLPR, CASIA & UCAS & Microsoft Research
- arxiv: https://arxiv.org/abs/2006.10721
- github: https://github.com/researchmm/TracKit
Joint Detection and Multi-Object Tracking with Graph Neural Networks
- intro: Carnegie Mellon University
- arxiv: https://arxiv.org/abs/2006.13164
Joint Multiple-Object Detection and Tracking
Chained-Tracker: Chaining Paired Attentive Regression Results for End-to-End Joint Multiple-Object Detection and Tracking
- intro: ECCV 2020 spotlight
- intro: Tencent Youtu Lab & Fudan University & Nara Institute of Science and Technology
- keywords: Chained-Tracker (CTracker)
- arxiv: https://arxiv.org/abs/2007.14557
- github: https://github.com/pjl1995/CTracker
SMOT: Single-Shot Multi Object Tracking
https://arxiv.org/abs/2010.16031
DEFT: Detection Embeddings for Tracking
Global Correlation Network: End-to-End Joint Multi-Object Detection and Tracking
- intro: ICCV 2021
- intro: Intell Tsinghua University & Beihang University
- arxiv: https://arxiv.org/abs/2103.12511
Tracking with Reinforcement Learning
Deep Reinforcement Learning for Visual Object Tracking in Videos
- intro: University of California at Santa Barbara & Samsung Research America
- arxiv: https://arxiv.org/abs/1701.08936
Visual Tracking by Reinforced Decision Making
End-to-end Active Object Tracking via Reinforcement Learning
https://arxiv.org/abs/1705.10561
Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning
- project page: https://sites.google.com/view/cvpr2017-adnet
- paper: https://drive.google.com/file/d/0B34VXh5mZ22cZUs2Umc1cjlBMFU/view?usp=drive_web
Tracking as Online Decision-Making: Learning a Policy from Streaming Videos with Reinforcement Learning
https://arxiv.org/abs/1707.04991
Detect to Track and Track to Detect
- intro: ICCV 2017
- project page: https://www.robots.ox.ac.uk/~vgg/research/detect-track/
- arxiv: https://arxiv.org/abs/1710.03958
- github: https://github.com/feichtenhofer/Detect-Track
Projects
MMTracking
- intro: OpenMMLab Video Perception Toolbox. It supports Single Object Tracking (SOT), Multiple Object Tracking (MOT), Video Object Detection (VID) with a unified framework.
- github: https://github.com/open-mmlab/mmtracking
Tensorflow_Object_Tracking_Video
- intro: Object Tracking in Tensorflow ( Localization Detection Classification ) developed to partecipate to ImageNET VID competition
- github: https://github.com/DrewNF/Tensorflow_Object_Tracking_Video
Resources
Multi-Object-Tracking-Paper-List
- intro: Paper list and source code for multi-object-tracking
- github: https://github.com/SpyderXu/multi-object-tracking-paper-list