Transfer Learning
Papers
Discriminative Transfer Learning with Tree-based Priors
- intro: NIPS 2013
- paper: http://deeplearning.net/wp-content/uploads/2013/03/icml13_workshop.pdf
- paper: http://www.cs.toronto.edu/~nitish/treebasedpriors.pdf
How transferable are features in deep neural networks?
- intro: NIPS 2014
- arxiv: http://arxiv.org/abs/1411.1792
- paper: http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf
- github: https://github.com/yosinski/convnet_transfer
Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks
Learning Transferable Features with Deep Adaptation Networks
- intro: ICML 2015
- arxiv: https://arxiv.org/abs/1502.02791
- gihtub: https://github.com/caoyue10/icml-caffe
Transferring Knowledge from a RNN to a DNN
- intro: CMU
- arxiv: https://arxiv.org/abs/1504.01483
Simultaneous Deep Transfer Across Domains and Tasks
- intro: ICCV 2015
- arxiv: http://arxiv.org/abs/1510.02192
Net2Net: Accelerating Learning via Knowledge Transfer
- arxiv: http://arxiv.org/abs/1511.05641
- github: https://github.com/soumith/net2net.torch
- notes(by Hugo Larochelle): https://www.evernote.com/shard/s189/sh/46414718-9663-440e-bbb7-65126b247b42/19688c438709251d8275d843b8158b03
Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping
A theoretical framework for deep transfer learning
- key words: transfer learning, PAC learning, PAC-Bayesian, deep learning
- homepage: http://imaiai.oxfordjournals.org/content/early/2016/04/28/imaiai.iaw008
- paper: http://imaiai.oxfordjournals.org/content/early/2016/04/28/imaiai.iaw008.full.pdf
Transfer learning using neon
Hyperparameter Transfer Learning through Surrogate Alignment for Efficient Deep Neural Network Training
What makes ImageNet good for transfer learning?
- project page: http://minyounghuh.com/papers/analysis/
- arxiv: http://arxiv.org/abs/1608.08614
Fine-tuning a Keras model using Theano trained Neural Network & Introduction to Transfer Learning
Multi-source Transfer Learning with Convolutional Neural Networks for Lung Pattern Analysis
Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-tuning
- intro: CVPR 2017. The University of Hong Kong
- arxiv: https://arxiv.org/abs/1702.08690
Optimal Transport for Deep Joint Transfer Learning
https://arxiv.org/abs/1709.02995
CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise
- intro: CVPR 2018. Microsoft AI and Research i& JD AI Research & Facebook
- keywords: Food-101N
- project page: https://kuanghuei.github.io/CleanNetProject/
- arxiv: https://arxiv.org/abs/1711.07131
- github(Tensorflow): https://github.com/kuanghuei/clean-net
- blog: https://www.microsoft.com/en-us/research/blog/using-transfer-learning-to-address-label-noise-for-large-scale-image-classification/
Transfer Learning with Binary Neural Networks
- intro: Machine Learning on the Phone and other Consumer Devices, NIPS2017 Workshop
- arxiv: https://arxiv.org/abs/1711.10761
Gradual Tuning: a better way of Fine Tuning the parameters of a Deep Neural Network
- intro: Université Paris Descartes, Paris
- arxiv: https://arxiv.org/abs/1711.10177
Born Again Neural Networks
- intro: University of Southern California & CMU & Amazon AI
- paper: http://metalearning.ml/papers/metalearn17_furlanello.pdf
Taskonomy: Disentangling Task Transfer Learning
- intro: CVPR 2018 (Oral). CVPR 2018 Best paper award. Stanford University & UC Berkeley
- project page: http://taskonomy.stanford.edu/
- arxiv: https://arxiv.org/abs/1804.08328
Do Better ImageNet Models Transfer Better?
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1805.08974
SOSELETO: A Unified Approach to Transfer Learning and Training with Noisy Labels
- keywords: SOSELETO (SOurce SELEction for Target Optimization)
- arxiv: https://arxiv.org/abs/1805.09622
GLoMo: Unsupervisedly Learned Relational Graphs as Transferable Representations
- intro: Carnegie Mellon University & New York University & Facebook AI Research
- arxiv: https://arxiv.org/abs/1806.05662
Taskonomy: Disentangling Task Transfer Learning
- intro: CVPR 2018 oral
- project page: http://taskonomy.stanford.edu/
- arxiv: https://arxiv.org/abs/1804.08328
- github: https://github.com/StanfordVL/taskonomy/tree/master/taskbank
One Shot Learning
One-shot Learning with Memory-Augmented Neural Networks
- intro: Google DeepMind
- arxiv: https://arxiv.org/abs/1605.06065
- github(Tensorflow): https://github.com/hmishra2250/NTM-One-Shot-TF
- note: http://rylanschaeffer.github.io/content/research/one_shot_learning_with_memory_augmented_nn/main.html
Matching Networks for One Shot Learning
- intro: Google DeepMind
- arxiv: https://arxiv.org/abs/1606.04080
- notes: https://blog.acolyer.org/2017/01/03/matching-networks-for-one-shot-learning/
Learning feed-forward one-shot learners [NIPS 2016] [VALSE seminar]
Generative Adversarial Residual Pairwise Networks for One Shot Learning
- intro: Indian Institute of Science
- arxiv: https://arxiv.org/abs/1703.08033
Few-Shot Learning
Optimization as a Model for Few-Shot Learning
- intro: Twitter
- paper: https://openreview.net/pdf?id=rJY0-Kcll
- github: https://github.com/twitter/meta-learning-lstm
Learning to Compare: Relation Network for Few-Shot Learning
- intro: Queen Mary University of London & The University of Edinburgh
- arxiv: https://arxiv.org/abs/1711.06025
Unleashing the Potential of CNNs for Interpretable Few-Shot Learning
- intro: Beihang University & Johns Hopkins University
- arxiv: https://arxiv.org/abs/1711.08277
Low-Shot Learning from Imaginary Data
- intro: Facebook AI Research (FAIR) & CMU & Cornell University
- arxiv: https://arxiv.org/abs/1801.05401
Semantic Feature Augmentation in Few-shot Learning
- keywords: TriNet
- arxiv: https://arxiv.org/abs/1804.05298
- github: https://github.com/tankche1/Semantic-Feature-Augmentation-in-Few-shot-Learning
Transductive Propagation Network for Few-shot Learning
- intro: achieved the state-of-the-art results on miniImagenet
- arxiv: https://arxiv.org/abs/1805.10002
TADAM: Task dependent adaptive metric for improved few-shot learning
- intro: Element AI
- arxiv: https://arxiv.org/abs/1805.10123