Visualizing and Interpreting Convolutional Neural Network
Papers
Deconvolutional Networks
- paper: http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
- video: https://ipam.wistia.com/medias/zd0qnekkwc
- presentation: https://mathinstitutes.org/videos/videos/3295
Visualizing and Understanding Convolutional Network
- intro: ECCV 2014
- arxiv: http://arxiv.org/abs/1311.2901
- slides: https://courses.cs.washington.edu/courses/cse590v/14au/cse590v_dec5_DeepVis.pdf
- slides: http://videolectures.net/site/normal_dl/tag=921098/eccv2014_zeiler_convolutional_networks_01.pdf
- video: http://videolectures.net/eccv2014_zeiler_convolutional_networks/
- chs: http://blog.csdn.net/kklots/article/details/17136059
- github: https://github.com/piergiaj/caffe-deconvnet
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
- intro: ICLR 2014 workshop
- arxiv: http://arxiv.org/abs/1312.6034
- github: https://github.com/yasunorikudo/vis-cnn
Understanding Deep Image Representations by Inverting Them
deepViz: Visualizing Convolutional Neural Networks for Image Classification
- paper: http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.pdf
- github: https://github.com/bruckner/deepViz
Inverting Convolutional Networks with Convolutional Networks
Understanding Neural Networks Through Deep Visualization
- project page: http://yosinski.com/deepvis
- arxiv: http://arxiv.org/abs/1506.06579
- github: https://github.com/yosinski/deep-visualization-toolbox
Visualizing Higher-Layer Features of a Deep Network
Generative Modeling of Convolutional Neural Networks
- project page: http://www.stat.ucla.edu/~yang.lu/Project/generativeCNN/main.html
- arxiv: http://arxiv.org/abs/1412.6296
- code: http://www.stat.ucla.edu/~yang.lu/Project/generativeCNN/doc/caffe-generative.zip
Understanding Intra-Class Knowledge Inside CNN
Learning FRAME Models Using CNN Filters for Knowledge Visualization
- project page: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
- arxiv: http://arxiv.org/abs/1509.08379
- code: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/doc/code.zip
Convergent Learning: Do different neural networks learn the same representations?
- intro: ICLR 2016
- arxiv: http://arxiv.org/abs/1511.07543
- github: https://github.com/yixuanli/convergent_learning
- video: http://videolectures.net/iclr2016_yosinski_convergent_learning/
Visualizing and Understanding Deep Texture Representations
- homepage: http://vis-www.cs.umass.edu/texture/
- arxiv: http://arxiv.org/abs/1511.05197
- paper: https://people.cs.umass.edu/~smaji/papers/texture-cvpr16.pdf
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
An Interactive Node-Link Visualization of Convolutional Neural Networks
- homepage: http://scs.ryerson.ca/~aharley/vis/
- code: http://scs.ryerson.ca/~aharley/vis/source.zip
- demo: http://scs.ryerson.ca/~aharley/vis/conv/
- review: http://www.popsci.com/gaze-inside-mind-artificial-intelligence
Learning Deep Features for Discriminative Localization
- project page: http://cnnlocalization.csail.mit.edu/
- arxiv: http://arxiv.org/abs/1512.04150
- github: https://github.com/metalbubble/CAM
- blog: http://jacobcv.blogspot.com/2016/08/class-activation-maps-in-keras.html
- github: https://github.com/jacobgil/keras-cam
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
- intro: Visualization for Deep Learning workshop. ICML 2016
- arxiv: http://arxiv.org/abs/1602.03616
- homepage: http://www.evolvingai.org/nguyen-yosinski-clune-2016-multifaceted-feature
- github: https://github.com/Evolving-AI-Lab/mfv
A New Method to Visualize Deep Neural Networks
A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks
VisualBackProp: visualizing CNNs for autonomous driving
VisualBackProp: efficient visualization of CNNs
Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
- arxiv: https://arxiv.org/abs/1610.02391
- github: https://github.com/ramprs/grad-cam/
- github(Keras): https://github.com/jacobgil/keras-grad-cam
- github(TensorFlow): https://github.com/Ankush96/grad-cam.tensorflow
Grad-CAM: Why did you say that?
- intro: NIPS 2016 Workshop on Interpretable Machine Learning in Complex Systems
- intro: extended abstract version of arXiv:1610.02391
- arxiv: https://arxiv.org/abs/1611.07450
Visualizing Residual Networks
- intro: UC Berkeley CS 280 final project report
- arxiv: https://arxiv.org/abs/1701.02362
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
- intro: University of Amsterdam & Canadian Institute of Advanced Research & Vrije Universiteit Brussel
- intro: ICLR 2017
- arxiv: https://arxiv.org/abs/1702.04595
- github: https://github.com/lmzintgraf/DeepVis-PredDiff
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
- intro: Georgia Tech & Facebook
- arxiv: https://arxiv.org/abs/1704.01942
Picasso: A Neural Network Visualizer
- arxiv: https://arxiv.org/abs/1705.05627
- github: https://github.com/merantix/picasso
- blog: https://medium.com/merantix/picasso-a-free-open-source-visualizer-for-cnns-d8ed3a35cfc5
CNN Fixations: An unraveling approach to visualize the discriminative image regions
A Forward-Backward Approach for Visualizing Information Flow in Deep Networks
- intro: NIPS 2017 Symposium on Interpretable Machine Learning. Iowa State University
- arxiv: https://arxiv.org/abs/1711.06221
Using KL-divergence to focus Deep Visual Explanation
https://arxiv.org/abs/1711.06431
An Introduction to Deep Visual Explanation
- intro: NIPS 2017 - Workshop Interpreting, Explaining and Visualizing Deep Learning
- arxiv: https://arxiv.org/abs/1711.09482
Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks
https://arxiv.org/abs/1712.06302
Visualizing the Loss Landscape of Neural Nets
- intro: University of Maryland & United States Naval Academy
- arxiv: https://arxiv.org/abs/1712.09913
Visualizing Deep Similarity Networks
https://arxiv.org/abs/1901.00536
Interpreting Convolutional Neural Networks
Network Dissection: Quantifying Interpretability of Deep Visual Representations
- intro: CVPR 2017 oral. MIT
- project page: http://netdissect.csail.mit.edu/
- arxiv: https://arxiv.org/abs/1704.05796
- github: https://github.com/CSAILVision/NetDissect
Interpreting Deep Visual Representations via Network Dissection
https://arxiv.org/abs/1711.05611
Methods for Interpreting and Understanding Deep Neural Networks
- intro: Technische Universit¨at Berlin & Fraunhofer Heinrich Hertz Institute
- arxiv: https://arxiv.org/abs/1706.07979
SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability
- intro: NIPS 2017. Google Brain & Uber AI Labs
- arxiv: https://arxiv.org/abs/1706.05806
- github: https://github.com/google/svcca/
- blog: https://research.googleblog.com/2017/11/interpreting-deep-neural-networks-with.html
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
- intro: Tsinghua University
- arxiv: https://arxiv.org/abs/1708.05493
Interpretable Convolutional Neural Networks
https://arxiv.org/abs/1710.00935
Interpreting Convolutional Neural Networks Through Compression
- intro: NIPS 2017 Symposium on Interpretable Machine Learning
- arxiv: https://arxiv.org/abs/1711.02329
Interpreting Deep Neural Networks
Interpreting CNNs via Decision Trees
https://arxiv.org/abs/1802.00121
Visual Interpretability for Deep Learning: a Survey
https://arxiv.org/abs/1802.00614
Interpreting Deep Classifier by Visual Distillation of Dark Knowledge
- intro: University of Edinburgh & Huawei Research America
- arxiv: https://arxiv.org/abs/1803.04042
How convolutional neural network see the world - A survey of convolutional neural network visualization methods
- intro: Mathematical Foundations of Computing. George Mason University & Clarkson University
- arxiv: https://arxiv.org/abs/1804.11191
Understanding Regularization to Visualize Convolutional Neural Networks
- intro: Konica Minolta Laboratory Europe & Technical University of Munich
- arxiv: https://arxiv.org/abs/1805.00071
Deeper Interpretability of Deep Networks
- intro: University of Glasgow & University of Oxford & University of California
- arxiv: https://arxiv.org/abs/1811.07807
Interpretable CNNs
https://arxiv.org/abs/1901.02413
Explaining AlphaGo: Interpreting Contextual Effects in Neural Networks
https://arxiv.org/abs/1901.02184
Interpretable BoW Networks for Adversarial Example Detection
https://arxiv.org/abs/1901.02229
Deep Features Analysis with Attention Networks
- intro: In AAAI-19 Workshop on Network Interpretability for Deep Learning
- arxiv: https://arxiv.org/abs/1901.10042
Understanding Neural Networks via Feature Visualization: A survey
- intro: A book chapter in an Interpretable ML book (http://www.interpretable-ml.org/book/)
- arxiv: https://arxiv.org/abs/1904.08939
Explaining Neural Networks via Perturbing Important Learned Features
https://arxiv.org/abs/1911.11081
Interpreting Adversarially Trained Convolutional Neural Networks
- intro: ICML 2019
- arxiv: https://arxiv.org/abs/1905.09797
- github: https://github.com/PKUAI26/AT-CNN
Projects
Interactive Deep Neural Net Hallucinations
- project page: http://317070.github.io/Dream/
- github: https://github.com/317070/Twitch-plays-LSD-neural-net
torch-visbox
draw_convnet: Python script for illustrating Convolutional Neural Network (ConvNet)
Caffe prototxt visualization
- intro: Recommended by Kaiming He
- github: https://github.com/ethereon/netscope
- quickstart: http://ethereon.github.io/netscope/quickstart.html
- demo: http://ethereon.github.io/netscope/#/editor
Keras Visualization Toolkit
mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models
- project page: http://vision03.csail.mit.edu/cnn_art/
- github: https://github.com/donglaiw/mNeuron
cnnvis-pytorch
- intro: visualization of CNN in PyTorch
- github: https://github.com/leelabcnbc/cnnvis-pytorch
VisualDL
- intro: A platform to visualize the deep learning process
- homepage: http://visualdl.paddlepaddle.org/
- github: https://github.com/PaddlePaddle/VisualDL
Blogs
“Visualizing GoogLeNet Classes”
http://auduno.com/post/125362849838/visualizing-googlenet-classes
Visualizing CNN architectures side by side with mxnet
How convolutional neural networks see the world: An exploration of convnet filters with Keras
- blog: http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
- github: https://github.com/fchollet/keras/blob/master/examples/conv_filter_visualization.py
Visualizing Deep Learning with t-SNE (Tutorial and Video)
- blog: https://medium.com/@awjuliani/visualizing-deep-learning-with-t-sne-tutorial-and-video-e7c59ee4080c#.ubhijafw7
- github: https://github.com/awjuliani/3D-TSNE
Peeking inside Convnets
Visualizing Features from a Convolutional Neural Network
- blog: http://kvfrans.com/visualizing-features-from-a-convolutional-neural-network/
- github: https://github.com/kvfrans/feature-visualization
Visualizing Deep Neural Networks Classes and Features
http://ankivil.com/visualizing-deep-neural-networks-classes-and-features/
Visualizing parts of Convolutional Neural Networks using Keras and Cats
- blog: https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59#.bt6bb13dk
- github: https://github.com/erikreppel/visualizing_cnns
Visualizing convolutional neural networks
- intro: How to build convolutional neural networks from scratch w/ Tensorflow
- blog: https://www.oreilly.com/ideas/visualizing-convolutional-neural-networks
- github: https://github.com//wagonhelm/Visualizing-Convnets/
Tools
Topological Visualisation of a Convolutional Neural Network
http://terencebroad.com/convnetvis/vis.html
Visualization of Places-CNN and ImageNet CNN
- homepage: http://places.csail.mit.edu/visualizationCNN.html
- DrawCNN: http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html
Visualization of a feed forward Neural Network using MNIST dataset
- homepage: http://nn-mnist.sennabaum.com/
- github: https://github.com/csenn/nn-visualizer
CNNVis: Towards Better Analysis of Deep Convolutional Neural Networks.
http://shixialiu.com/publications/cnnvis/demo/
Quiver: Interactive convnet features visualization for Keras
- homepage: https://jakebian.github.io/quiver/
- github: https://github.com/jakebian/quiver
Netron
- intro: Visualizer for deep learning and machine learning models
- github: https://github.com/lutzroeder/netron