Super-Resolution
Papers
Super-Resolution.Benckmark
- intro: Benchmark and resources for single super-resolution algorithms
- github: https://github.com/huangzehao/Super-Resolution.Benckmark
Image Super-Resolution Using Deep Convolutional Networks
- intro: Microsoft Research
- project page: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
- arxiv: http://arxiv.org/abs/1501.00092
- training code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_train.zip
- test code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_v1.zip
- github(Keras): https://github.com/titu1994/Image-Super-Resolution
Learning a Deep Convolutional Network for Image Super-Resolution
- Baidu-pan: http://pan.baidu.com/s/1c0k0wRu
Shepard Convolutional Neural Networks
- paper: https://papers.nips.cc/paper/5774-shepard-convolutional-neural-networks.pdf
- github: https://github.com/jimmy-ren/vcnn_double-bladed/tree/master/applications/Shepard_CNN
Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution
- intro: NIPS 2015
- paper: https://papers.nips.cc/paper/5778-bidirectional-recurrent-convolutional-networks-for-multi-frame-super-resolution
Deeply-Recursive Convolutional Network for Image Super-Resolution
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1511.04491
- paper: http://cv.snu.ac.kr/publication/conf/2016/DRCN_CVPR2016.pdf
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
- intro: CVPR 2016 Oral
- project page: http://cv.snu.ac.kr/research/VDSR/
- arxiv: http://arxiv.org/abs/1511.04587
- code: http://cv.snu.ac.kr/research/VDSR/VDSR_code.zip
- github: https://github.com/huangzehao/caffe-vdsr
- github(Torch): https://github.com/pby5/vdsr_torch
Super-Resolution with Deep Convolutional Sufficient Statistics
Deep Depth Super-Resolution : Learning Depth Super-Resolution using Deep Convolutional Neural Network
Local- and Holistic- Structure Preserving Image Super Resolution via Deep Joint Component Learning
End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks
Accelerating the Super-Resolution Convolutional Neural Network
- intro: speed up of more than 40 times with even superior restoration quality, real-time performance on a generic CPU
- project page: http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
- arxiv: http://arxiv.org/abs/1608.00367
srez: Image super-resolution through deep learning
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- intro: CVPR 2017 Oral
- arxiv: https://arxiv.org/abs/1609.04802
- github: https://github.com/tensorlayer/SRGAN
- github(Torch): https://github.com/leehomyc/Photo-Realistic-Super-Resoluton
- github: https://github.com/junhocho/SRGAN
- github(Keras): https://github.com/titu1994/Super-Resolution-using-Generative-Adversarial-Networks
- github: https://github.com/buriburisuri/SRGAN
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1609.05158
- github: https://github.com/Tetrachrome/subpixel
Is the deconvolution layer the same as a convolutional layer?
- intro: A note on RealTime Single Image and Video SuperResolution Using an Efficient SubPixel Convolutional Neural Network.
- arxiv: http://arxiv.org/abs/1609.07009
Amortised MAP Inference for Image Super-resolution
Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
Super-Resolution on Satellite Imagery using Deep Learning
Neural Enhance: Super Resolution for images using deep learning.
- github: https://github.com/alexjc/neural-enhance
- docker: https://github.com/alexjc/neural-enhance/blob/master/docker-cpu.df
Texture Enhancement via High-Resolution Style Transfer for Single-Image Super-Resolution
- intro: Digital Media & Communications R&D Center, Samsung Electronics, Seoul, Korea
- arxiv: https://arxiv.org/abs/1612.00085
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis
Learning a Mixture of Deep Networks for Single Image Super-Resolution
- project page: http://www.ifp.illinois.edu/~dingliu2/accv2016/
- arxiv: https://arxiv.org/abs/1701.00823
- code: http://www.ifp.illinois.edu/~dingliu2/accv2016/codes/python_accv2016.zip
Dual Recovery Network with Online Compensation for Image Super-Resolution
Super-resolution Using Constrained Deep Texture Synthesis
- intro: Brown University & Georgia Institute of Technology
- arxiv: https://arxiv.org/abs/1701.07604
Pixel Recursive Super Resolution
- arxiv: https://arxiv.org/abs/1702.00783
- github(Tensorflow): https://github.com/nilboy/pixel-recursive-super-resolution
GUN: Gradual Upsampling Network for single image super-resolution
Single Image Super-resolution with a Parameter Economic Residual-like Convolutional Neural Network
- intro: Extentions of mmm 2017 paper
- arxiv: https://arxiv.org/abs/1703.08173
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
- intro: CVPR 2017
- project page(code+dataset): http://vllab1.ucmerced.edu/~wlai24/LapSRN/
- arxiv: https://arxiv.org/abs/1704.03915
- github(Matlab+MatConvNet): https://github.com/phoenix104104/LapSRN
Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks
- project page: http://vllab.ucmerced.edu/wlai24/LapSRN/
- arxiv: https://arxiv.org/abs/1710.01992
- github: https://github.com/phoenix104104/LapSRN
Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network
- intro: South China University of Technology
- arxiv: https://arxiv.org/abs/1705.05084
Super-Resolution via Deep Learning
- intro: COMSATS Institute of IT (CIIT)
- arxiv: https://arxiv.org/abs/1706.09077
High-Quality Face Image SR Using Conditional Generative Adversarial Networks
https://arxiv.org/abs/1707.00737
Enhanced Deep Residual Networks for Single Image Super-Resolution
- intro: CVPR 2017 workshop. Best paper award of the NTIRE2017 workshop, and the winners of the NTIRE2017 Challenge on Single Image Super-Resolution
- arxiv: https://arxiv.org/abs/1707.02921
- paper: http://cv.snu.ac.kr/publication/conf/2017/EDSR_fixed.pdf
- github: https://github.com/LimBee/NTIRE2017
Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network
- arxiv: https://arxiv.org/abs/1707.05425
- github(Tensorflow): https://github.com/jiny2001/dcscn-super-resolution
Single Image Super-Resolution with Dilated Convolution based Multi-Scale Information Learning Inception Module
- intro: ICIP 2017
- arxiv: https://arxiv.org/abs/1707.07128
Attention-Aware Face Hallucination via Deep Reinforcement Learning
https://arxiv.org/abs/1708.03132
CISRDCNN: Super-resolution of compressed images using deep convolutional neural networks
https://arxiv.org/abs/1709.06229
Deep Inception-Residual Laplacian Pyramid Networks for Accurate Single Image Super-Resolution
- intro: Chongqing University
- arxiv: https://arxiv.org/abs/1711.05431
D-PCN: Parallel Convolutional Neural Networks for Image Recognition in Reverse Adversarial Style
{https://arxiv.org/abs/1711.04237}(https://arxiv.org/abs/1711.04237)
CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution
- intro: IEEE Winter Conf. on Applications of Computer Vision (WACV) 2018, Lake Tahoe, USA
- arxiv: https://arxiv.org/abs/1711.04048
FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
- intro: CVPR 2018 spotlight
- arxiv: https://arxiv.org/abs/1711.10703
- github: https://github.com/tyshiwo/FSRNet
A Frequency Domain Neural Network for Fast Image Super-resolution
https://arxiv.org/abs/1712.03037
SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution
https://arxiv.org/abs/1712.05927
“Zero-Shot” Super-Resolution using Deep Internal Learning
- project page: http://www.wisdom.weizmann.ac.il/~vision/zssr/
- arxiv: https://arxiv.org/abs/1712.06087
- github: https://github.com/jacobgil/pytorch-zssr
Super-Resolution with Deep Adaptive Image Resampling
https://arxiv.org/abs/1712.06463
SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution
- intro: Peking Univeristy
- arxiv: https://arxiv.org/abs/1712.05927
SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks
- intro: ICPR 2018
- arxiv: https://arxiv.org/abs/1801.10319
Deep Image Super Resolution via Natural Image Priors
https://arxiv.org/abs/1802.02721
Residual Dense Network for Image Super-Resolution
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1802.08797
Deep Back-Projection Networks For Super-Resolution
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1803.02735
Fast, Accurate, and, Lightweight Super-Resolution with Cascading Residual Network
https://arxiv.org/abs/1803.08664
Fast and Accurate Single Image Super-Resolution via Information Distillation Network
- intro: CVPR 2018
- arxiv: https://arxiv.org/abs/1803.09454
Deep Residual Networks with a Fully Connected Recon-struction Layer for Single Image Super-Resolution
https://arxiv.org/abs/1805.10143
Adaptive Importance Learning for Improving Lightweight Image Super-resolution Network
https://arxiv.org/abs/1806.01576
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1807.02758
An Attention-Based Approach for Single Image Super Resolution
https://arxiv.org/abs/1807.06779
The Unreasonable Effectiveness of Texture Transfer for Single Image Super-resolution
https://arxiv.org/abs/1808.00043
Deep Learning for Single Image Super-Resolution: A Brief Review
https://arxiv.org/abs/1808.03344
Improving Super-Resolution Methods via Incremental Residual Learning
https://arxiv.org/abs/1808.07110
Deep Learning-based Image Super-Resolution Considering Quantitative and Perceptual Quality
- intro: Won the 2nd place for Region 2 in the PIRM Challenge on Perceptual Super Resolution at ECCV 2018
- arxiv: https://arxiv.org/abs/1809.04789
- github: https://github.com/idearibosome/tf-perceptual-eusr
Generative adversarial network-based image super-resolution using perceptual content losses
- intro: Won the 2nd place for Region 1 in the PIRM Challenge on Perceptual Super Resolution at ECCV 2018
- arxiv: https://arxiv.org/abs/1809.04783
Channel-wise and Spatial Feature Modulation Network for Single Image Super-Resolution
https://arxiv.org/abs/1809.11130
Triple Attention Mixed Link Network for Single Image Super Resolution
https://arxiv.org/abs/1810.03254
Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search
https://arxiv.org/abs/1901.07261
Feedback Network for Image Super-Resolution
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1903.09814
- github(official, Pytorch): https://github.com/Paper99/SRFBN_CVPR19
Video Super-resolution
Detail-revealing Deep Video Super-resolution
End-to-End Learning of Video Super-Resolution with Motion Compensation
- intro: GCPR 2017
- arxiv: https://arxiv.org/abs/1707.00471
Frame-Recurrent Video Super-Resolution
https://arxiv.org/abs/1801.04590
Photorealistic Video Super Resolution
https://arxiv.org/abs/1807.07930
Recurrent Back-Projection Network for Video Super-Resolution
- intro: CVPR 2019
- keywords: Vimeo90k
- project page: https://alterzero.github.io/projects/RBPN.html
- arxiv: https://arxiv.org/abs/1903.10128
- github: https://github.com/alterzero/RBPN-PyTorch
Fast Spatio-Temporal Residual Network for Video Super-Resolution
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1904.02870
Projects
waifu2x
- intro: Image Super-Resolution for Anime-Style Art
- github: https://github.com/nagadomi/waifu2x