3D
Papers
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1904.05866
- project page: https://smpl-x.is.tue.mpg.de/
- github: https://github.com/vchoutas/smplify-x
Collaborative Regression of Expressive Bodies using Moderation
- intro: PIXIE
- project page: https://pixie.is.tue.mpg.de/
- arxiv: https://arxiv.org/abs/2105.05301
- github: https://github.com/YadiraF/PIXIE
Hand Image Understanding via Deep Multi-Task Learning
- intro: ICCV 2021
- arxiv: https://arxiv.org/abs/2107.11646
VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the Wild
https://arxiv.org/abs/2108.02452
EventHPE: Event-based 3D Human Pose and Shape Estimation
- intro: ICCV 2021
- intro: University of Alberta & Shandong University & Celepixel Technology & University of Guelph & Nanyang Technological University
- arxiv: https://arxiv.org/abs/2108.06819
Monocular 3D Object Detection
Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss
- keywords: SS3D
- arxiv: https://arxiv.org/abs/1906.08070
- video: https://www.youtube.com/playlist?list=PL4jJwJr7UjMb4bzLwUGHdVmhfNS2Ads_x
M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
- intro: ICCV 2019 oral
- project page: http://cvlab.cse.msu.edu/project-m3d-rpn.html
- arxiv: https://arxiv.org/abs/1907.06038
- github: https://github.com/garrickbrazil/M3D-RPN
Learning Depth-Guided Convolutions for Monocular 3D Object Detection
- intro: CVPR 2020
- arxiv: https://arxiv.org/abs/1912.04799
- github: https://github.com/dingmyu/D4LCN
RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving
- intro: ECCV 2020
- arxiv: https://arxiv.org/abs/2001.03343
SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation
- intro: CVPR 2020
- intro: ZongMu Tech & TU/e
- arxiv: https://arxiv.org/abs/2002.10111
- github(official): https://github.com/lzccccc/SMOKE
Center3D: Center-based Monocular 3D Object Detection with Joint Depth Understanding
- keywords: one-stage anchor-free
- arxiv: https://arxiv.org/abs/2005.13423
Monocular Differentiable Rendering for Self-Supervised 3D Object Detection
- intro: ECCV 2020
- intro: Preferred Networks, Inc & Toyota Research Institute
- arxiv: https://arxiv.org/abs/2009.14524
M3DSSD: Monocular 3D Single Stage Object Detector
- intro: CVPR 2021
- intro: Zhejiang University & Mohamed bin Zayed University of Artificial Intelligence & Inception Institute of Artificial Intelligence
- arxiv: https://arxiv.org/abs/2103.13164
Delving into Localization Errors for Monocular 3D Object Detection
- intro: CVPR 2021
- arxiv: https://arxiv.org/abs/2103.16237
- github: https://github.com/xinzhuma/monodle
Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection
- github: CVPR 2021
- arxiv: https://arxiv.org/abs/2103.16470
- github: https://github.com/fudan-zvg/DDMP
GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection
- intro: CVPR 2021
- arxiv: https://arxiv.org/abs/2103.17202
Objects are Different: Flexible Monocular 3D Object Detection
- intro: CVPR 2021
- arxiv: https://arxiv.org/abs/2104.02323
- github: https://github.com/zhangyp15/MonoFlex
Geometry-based Distance Decomposition for Monocular 3D Object Detection
https://arxiv.org/abs/2104.03775
Geometry-aware data augmentation for monocular 3D object detection
https://arxiv.org/abs/2104.05858
OCM3D: Object-Centric Monocular 3D Object Detection
https://arxiv.org/abs/2104.06041
Exploring 2D Data Augmentation for 3D Monocular Object Detection
https://arxiv.org/abs/2104.10786
Progressive Coordinate Transforms for Monocular 3D Object Detection
- intro: Fudan University & Amazon Inc.
- arxiv: https://arxiv.org/abs/2108.05793
- github: https://github.com/amazon-research/progressive-coordinate-transforms
AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection
- intro: ICCV 2021
- intro: Baidu Research
- arxiv: https://arxiv.org/abs/2108.11127
- github: https://github.com/zongdai/AutoShape
Categorical Depth Distribution Network for Monocular 3D Object Detection
- intro: CVPR 2021 oral
- intro: University of Toronto Robotics Institute
- project page: https://trailab.github.io/CaDDN/
- arxiv: https://arxiv.org/abs/2103.01100
- github: https://github.com/TRAILab/CaDDN
The Devil is in the Task: Exploiting Reciprocal Appearance-Localization Features for Monocular 3D Object Detection
- intro: ICCV 2021
- arxiv: https://arxiv.org/abs/2112.14023
SGM3D: Stereo Guided Monocular 3D Object Detection
- intro: Fudan University & Baidu Inc.
- arxiv: https://arxiv.org/abs/2112.01914
- github: https://github.com/zhouzheyuan/sgm3d
MonoDistill: Learning Spatial Features for Monocular 3D Object Detection
- intro: ICLR 2022
- intro: Dalian University of Technology & The University of Sydney
- arxiv: https://arxiv.org/abs/2201.10830
- github: https://github.com/monster-ghost/MonoDistill
Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving
- intro: CVPR 2022
- arxiv: https://arxiv.org/abs/2203.02112
- github:https://github.com/revisitq/Pseudo-Stereo-3D
MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D Object Detection
- intro: CVPR 2022
- intro: The Hong Kong University of Science and Technology & DJI
- arxiv: https://arxiv.org/abs/2203.08563
MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer
- intro: CVPR 2022
- intro: National Taiwan University & Mobile Drive Technology
- arxiv: https://arxiv.org/abs/2203.10981
- github: https://github.com/kuanchihhuang/MonoDTR
MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection
- intro: Shanghai AI Laboratory & Peking University & The Chinese University of Hong Kong
- arxiv: https://arxiv.org/abs/2203.13310
Homography Loss for Monocular 3D Object Detection
- intro: CVPR 2022
- arxiv: https://arxiv.org/abs/2204.00754
Towards Model Generalization for Monocular 3D Object Detection
- intro: Harbin Institute of Technology & University of Science and Technology of China & SenseTime Research
- arxiv: https://arxiv.org/abs/2205.11664
Delving into the Pre-training Paradigm of Monocular 3D Object Detection
- intro: Tsinghua University & Huazhong University of Science and Technology
- arxiv: https://arxiv.org/abs/2206.03657
MonoGround: Detecting Monocular 3D Objects from the Ground
- intro: CVPR 2022
- arxiv: https://arxiv.org/abs/2206.07372
- github: https://github.com/cfzd/MonoGround
Densely Constrained Depth Estimator for Monocular 3D Object Detection
- intro: ECCV 2022
- intro: CASIA & UCAS & HKISI CAS
- arxiv: https://arxiv.org/abs/2207.10047
- github:https://github.com/BraveGroup/DCD
Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection
- intro: DiDi
- arxiv: https://arxiv.org/abs/2207.07933
DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection
- intro: ECCV 2022
- intro: Zhejiang University & Fabu Inc.
- arxiv: https://arxiv.org/abs/2207.08531
- github: https://github.com/SPengLiang/DID-M3D
DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection
- intro: ECCV 2022
- intro: Michigan State University & Meta AI & Ford Motor Company
- arxiv: https://arxiv.org/abs/2207.10758
- github: https://github.com/abhi1kumar/DEVIANT
Monocular 3D Object Detection with Depth from Motion
- intro: ECCV 2022 Oral
- intro: The Chinese University of Hong Kong & Shanghai AI Laboratory
- arxiv: https://arxiv.org/abs/2207.12988
- github: https://github.com/Tai-Wang/Depth-from-Motion
MV-FCOS3D++: Multi-View Camera-Only 4D Object Detection with Pretrained Monocular Backbones
- intro: The Chinese University of Hong Kong & Hong Kong University of Science and Technology & The Chinese University of Hong Kong & 4Nanyang Technological University
- arxiv: https://arxiv.org/abs/2207.12716
- github: https://github.com/Tai-Wang/Depth-from-Motion
SEFormer: Structure Embedding Transformer for 3D Object Detection
- intro: Tsinghua University & Australian National University & National University of Singapore
- arxiv: https://arxiv.org/abs/2209.01745
Multi-Modal 3D Object Detection
AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection
- intro: IJCAI 2022
- intro: University of Science and Technology & Harbin Institute of Technology & SenseTime Research & The Chinese University of Hong Kong & Tsinghua University
- arxiv: https://arxiv.org/abs/2201.06493
AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection
- intro: ECCV 2022
- intro: University of Science and Technology of China & Harbin Institute of Technology & SenseTime Research
- arxiv: https://arxiv.org/abs/2207.10316
- github: https://github.com/zehuichen123/AutoAlignV2
Monocular 3D Detection and Tracking
Time3D: End-to-End Joint Monocular 3D Object Detection and Tracking for Autonomous Driving
- intro: CVPR 2022
- intro: PP-CEM & Rising Auto
- arxiv: https://arxiv.org/abs/2205.14882
Depth Estimation Matters Most: Improving Per-Object Depth Estimation for Monocular 3D Detection and Tracking
- intro: Waymo LLC & Johns Hopkins University & Cornell University
- arxiv: https://arxiv.org/abs/2206.03666
Multi-Camera 3D Object Detection
PETR: Position Embedding Transformation for Multi-View 3D Object Detection
- intro: MEGVII Technology
- arxiv: https://arxiv.org/abs/2203.05625
PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
- intro: MEGVII Technology
- arxiv: https://arxiv.org/abs/2206.01256
Sparse4D
Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion
- intro: Horizon Robotics
- arxiv: https://arxiv.org/abs/2211.10581
- github: https://github.com/linxuewu/Sparse4D
Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
- intro: Horizon Robotics
- arxiv: https://arxiv.org/abs/2305.14018
- github: https://github.com/linxuewu/Sparse4D
Sparse4D v3: Advancing End-to-End 3D Detection and Tracking
- intro: Horizon Robotics
- arxiv: https://arxiv.org/abs/2311.11722
- github: https://github.com/linxuewu/Sparse4D
Multi-Camera Multiple 3D Object Tracking
Multi-Camera Multiple 3D Object Tracking on the Move for Autonomous Vehicles
- intro: CVPR Workshop 2022
- arxiv: https://arxiv.org/abs/2204.09151
SRCN3D: Sparse R-CNN 3D Surround-View Camera Object Detection and Tracking for Autonomous Driving
- intro: Tsinghua University
- arxiv: https://arxiv.org/abs/2206.14451
- github: https://github.com/synsin0/SRCN3D