Neural Architecture Search
Papers
Neural Architecture Search with Reinforcement Learning
- intro: Google Brain
- paper: https://openreview.net/pdf?id=r1Ue8Hcxg
Neural Optimizer Search with Reinforcement Learning
- intro: ICML 2017
- arxiv: https://arxiv.org/abs/1709.07417
Learning Transferable Architectures for Scalable Image Recognition
- intro: Google Brain
- keywords: Neural Architecture Search Network (NASNet), AutoML
- arxiv: https://arxiv.org/abs/1707.07012
- gtihub: https://github.com//titu1994/Keras-NASNet
- blog: https://research.googleblog.com/2017/11/automl-for-large-scale-image.html
- github: https://github.com/titu1994/neural-architecture-search
The First Step-by-Step Guide for Implementing Neural Architecture Search with Reinforcement Learning Using TensorFlow
- blog: https://lab.wallarm.com/the-first-step-by-step-guide-for-implementing-neural-architecture-search-with-reinforcement-99ade71b3d28
- github: https://github.com/wallarm/nascell-automl
Practical Network Blocks Design with Q-Learning
https://arxiv.org/abs/1708.05552
Transfer Learning to Learn with Multitask Neural Model Search
- intro: Stanford University & Google Research
- keywords: Multitask Neural Model Search (MNMS)
- arxiv: https://arxiv.org/abs/1710.10776
Simple And Efficient Architecture Search for Convolutional Neural Networks
- intro: Bosch Center for Artificial Intelligence & University of Freiburg
- arxiv: https://arxiv.org/abs/1711.04528
Progressive Neural Architecture Search
- intri: Johns Hopkins University & Google Brain & Google Cloud & Stanford University & Google AI
- arxiv: https://arxiv.org/abs/1712.00559
Finding Competitive Network Architectures Within a Day Using UCT
- intro: IBM Research AI – Ireland
- arxiv: https://arxiv.org/abs/1712.07420
Regularized Evolution for Image Classifier Architecture Search
https://arxiv.org/abs/1802.01548
Efficient Neural Architecture Search via Parameters Sharing
- intro: Google Brain & CMU & Stanford University
- arxiv: https://arxiv.org/abs/1802.03268
- github: https://github.com/carpedm20/ENAS-pytorch
- github: https://github.com/melodyguan/enas
Neural Architecture Search with Bayesian Optimisation and Optimal Transport
- intro: CMU
- arxiv: https://arxiv.org/abs/1802.07191
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
- intro: Brown University & Northeastern University
- arxiv: https://arxiv.org/abs/1805.07440
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures
- intro: National Tsing-Hua University & Google https://arxiv.org/abs/1806.08198
DARTS: Differentiable Architecture Search
- intro: ICLR 2019
- intro: Google & CMU
- arxiv: https://arxiv.org/abs/1806.09055
- github(official): https://github.com/dragen1860/DARTS-PyTorch
- gtihub: https://github.com/quark0/darts
DARTS+: Improved Differentiable Architecture Search with Early Stopping
https://arxiv.org/abs/1909.06035
Towards Automated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter Search
- intro: ICML 2018 AutoML Workshop
- intro: University of Freiburg
- arxiv: https://arxiv.org/abs/1807.06906
MnasNet: Platform-Aware Neural Architecture Search for Mobile
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1807.11626
- github: https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
Efficient Progressive Neural Architecture Search
- intro: BMVC 2018
- arxiv: https://arxiv.org/abs/1808.00391
Reinforced Evolutionary Neural Architecture Search
https://arxiv.org/abs/1808.00193
Teacher Guided Architecture Search
https://arxiv.org/abs/1808.01405
BlockQNN: Efficient Block-wise Neural Network Architecture Generation
https://arxiv.org/abs/1808.05584
Neural Architecture Search: A Survey
- intro: Bosch Center for Artificial Intelligence & University of Freiburg
- arxiv: https://arxiv.org/abs/1808.05377
Searching for Efficient Multi-Scale Architectures for Dense Image Prediction
- intro: NIPS 2018
- intro: Google Inc.
- arxiv: https://arxiv.org/abs/1809.04184
NSGA-NET: A Multi-Objective Genetic Algorithm for Neural Architecture Search
Graph HyperNetworks for Neural Architecture Search
https://arxiv.org/abs/1810.05749
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
https://arxiv.org/abs/1810.10804
InstaNAS: Instance-aware Neural Architecture Search
- intro: ICML 2019 AutoML Workshop
- project page: https://hubert0527.github.io/InstaNAS/
- arxiv: https://arxiv.org/abs/1811.10201
- github: https://github.com/AnjieZheng/InstaNAS
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
- intro: MIT
- arxiv: https://arxiv.org/abs/1812.00332
- github: https://github.com/MIT-HAN-LAB/ProxylessNAS
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search
- intro: UC Berkeley & Princeton University & Facebook Inc.
- arxiv: https://arxiv.org/abs/1812.03443
IRLAS: Inverse Reinforcement Learning for Architecture Search
- intro: SenseTime & CUHK
- arxiv: https://arxiv.org/abs/1812.05285
EAT-NAS: Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search
- intro: Huazhong University of Science and Technology & Horizon Robotics & Chinese Academy of Sciences
- arxiv: https://arxiv.org/abs/1901.05884
DVOLVER: Efficient Pareto-Optimal Neural Network Architecture Search
https://arxiv.org/abs/1902.01654
MFAS: Multimodal Fusion Architecture Search
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1903.06496
Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1903.03777
sharpDARTS: Faster and More Accurate Differentiable Architecture Search
https://arxiv.org/abs/1903.09900
Network Slimming by Slimmable Networks: Towards One-Shot Architecture Search for Channel Numbers
https://arxiv.org/abs/1903.11728
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search
- intro: Brown University & Facebook AI Research
- arxiv: https://arxiv.org/abs/1903.11059
- github: https://github.com/linnanwang/AlphaX-NASBench101
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours
https://arxiv.org/abs/1904.02877 https://github.com/dstamoulis/single-path-nas
Resource Constrained Neural Network Architecture Search
https://arxiv.org/abs/1904.03786
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1904.07392
Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation
https://arxiv.org/abs/1904.12760
Searching for MobileNetV3
- intro: Google AI & Google Brain
- arxiv: https://arxiv.org/abs/1905.02244
Network Pruning via Transformable Architecture Search
- arxiv: https://arxiv.org/abs/1905.09717
- github: https://github.com/D-X-Y/TAS
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
- intro: ICML 2019
- arxiv: https://arxiv.org/abs/1905.11946
- github(TensorFlow): https://github.com/mingxingtan/efficientnet
- github: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
EfficientNetV2: Smaller Models and Faster Training
- intro: Google Research
- arxiv: https://arxiv.org/abs/2104.00298
- github: https://github.com/google/automl/tree/master/efficientnetv2
Dynamic Distribution Pruning for Efficient Network Architecture Search
XNAS: Neural Architecture Search with Expert Advice
- intro: Machine Intelligence Technology, Alibaba Group
- arxiv: https://arxiv.org/abs/1906.08031
Densely Connected Search Space for More Flexible Neural Architecture Search
- intro: CVPR 2020
- arxiv: https://arxiv.org/abs/1906.09607
- github(official): https://github.com/JaminFong/DenseNAS
FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search
- intro: Xiaomi AI Lab
- arxiv: https://arxiv.org/abs/1907.01845
- github: https://github.com/fairnas/FairNAS
PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search
XferNAS: Transfer Neural Architecture Search
https://arxiv.org/abs/1907.08307
ScarletNAS: Bridging the Gap Between Scalability and Fairness in Neural Architecture Search
- intro: Xiaomi AI Lab
- arxiv: https://arxiv.org/abs/1908.06022
- github: https://github.com/xiaomi-automl/SCARLET-NAS
MANAS: Multi-Agent Neural Architecture Search
https://arxiv.org/abs/1909.01051
HM-NAS: Efficient Neural Architecture Search via Hierarchical Masking
- intro: ICCV 2019 Neural Architects Workshop
- arxiv: https://arxiv.org/abs/1909.00122
CARS: Continuous Evolution for Efficient Neural Architecture Search
https://arxiv.org/abs/1909.04977
Understanding and Robustifying Differentiable Architecture Search
https://arxiv.org/abs/1909.09656
StacNAS: Towards stable and consistent optimization for differentiable Neural Architecture Search
https://arxiv.org/abs/1909.11926
Scheduled Differentiable Architecture Search for Visual Recognition
https://arxiv.org/abs/1909.10236
Searching for A Robust Neural Architecture in Four GPU Hours
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1910.04465
- github: https://github.com/D-X-Y/NAS-Projects
One-Shot Neural Architecture Search via Self-Evaluated Template Network
- intro: ICCV 2019
- arxiv: https://arxiv.org/abs/1910.05733
- github: https://github.com/D-X-Y/NAS-Projects
Binarized Neural Architecture Search
https://arxiv.org/abs/1911.10862
Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search
- intro: Xiaomi AI Lab
- arxiv: https://arxiv.org/abs/1911.12126
- github: https://github.com/xiaomi-automl/FairDARTS
Blockwisely Supervised Neural Architecture Search with Knowledge Distillation
- intro: CVPR 2020
- intro: 1DarkMatter AI Research & Monash University & Sun Yat-sen University
- arxiv: https://arxiv.org/abs/1911.13053
- github: https://github.com/changlin31/DNA
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
- intro: ICLR 2020
- arxiv: https://arxiv.org/abs/1912.09640
- github: https://github.com/meijieru/AtomNAS
BATS: Binary ArchitecTure Search
GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet
- intro: CVPR 2020
- intro: SenseTime & Tsinghua University & HUST
- arxiv: https://arxiv.org/abs/2003.11236
BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models
- intro: Google Brain & University of Illinois at Urbana-Champaign
- arxiv: https://arxiv.org/abs/2003.11142
MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning
- intro: CVPR 2020
- arxiv: https://arxiv.org/abs/2003.14058
- github: https://github.com/bhpfelix/MTLNAS
FedNAS: Federated Deep Learning via Neural Architecture Search
- intro: CVPR 2020
- intro: University of Southern California
- arxiv: https://arxiv.org/abs/2004.08546
- github: https://github.com/chaoyanghe/FedNAS
Rethinking Performance Estimation in Neural Architecture Search
https://arxiv.org/abs/2005.09917
AutoHAS: Differentiable Hyper-parameter and Architecture Search
https://arxiv.org/abs/2006.03656
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Searc
- intro: ICML 2020
- intro: Tencent AI Lab
- arxiv: https://arxiv.org/abs/2007.07197
Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search
- intro: NeurIPS 2020
- arxiv: https://arxiv.org/abs/2010.15821
- github: https://github.com/microsoft/cream
UniNet: Unified Architecture Search with Convolution, Transformer, and MLP
- intro: CUHK-SenseTime Joint Laboratory & The Chinese University of Hong Kong & SenseTime Research
- arxiv: https://arxiv.org/abs/2110.04035