Deep Learning with Machine Learning
Bayesian
Scalable Bayesian Optimization Using Deep Neural Networks
- intro: ICML 2015
- paper: http://jmlr.org/proceedings/papers/v37/snoek15.html
- arxiv: http://arxiv.org/abs/1502.05700
- github: https://github.com/bshahr/torch-dngo
Bayesian Dark Knowledge
Memory-based Bayesian Reasoning with Deep Learning
- intro: Google DeepMind
- slides: http://blog.shakirm.com/wp-content/uploads/2015/11/CSML_BayesDeep.pdf
Towards Bayesian Deep Learning: A Survey
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
- intro: IEEE Transactions on Knowledge and Data Engineering (TKDE), 2016
- arxiv: http://arxiv.org/abs/1608.06884
Bayesian Deep Learning: Neural Networks in PyMC3 estimated with Variational Inference
Bayesian Deep Learning Part II: Bridging PyMC3 and Lasagne to build a Hierarchical Neural Network
Deep Bayesian Active Learning with Image Data
- project page: http://mlg.eng.cam.ac.uk/yarin/publications.html#Gal2016Active
- arxiv: https://arxiv.org/abs/1703.02910
Deep Learning: A Bayesian Perspective
- intro: University of Chicago & George Mason University
- arxiv: https://arxiv.org/abs/1706.00473
- paper: https://projecteuclid.org/euclid.ba/1510801992
On Bayesian Deep Learning and Deep Bayesian Learning
- intro: University of Oxford & DeepMind
- lecture: http://csml.stats.ox.ac.uk/news/2017-12-08-ywteh-breiman-lecture/
- video: https://www.facebook.com/nipsfoundation/videos/1555493854541848/
- mirror: https://www.bilibili.com/video/av17121345/
Bayesian Neural Networks
Bayesian Convolutional Neural Networks
- intro: NeuralSpace
- arxiv: https://arxiv.org/abs/1806.05978
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
- intro: ICML 2018
- intro: RIKEN Center for Advanced Intelligence project & University of British Columbia & University of Oxford
- arxiv: https://arxiv.org/abs/1806.04854
- github: https://github.com/emtiyaz/vadam
Bag of Words (BoW)
Deep Learning Transcends the Bag of Words
- blog: http://www.kdnuggets.com/2015/12/deep-learning-outgrows-bag-words-recurrent-neural-networks.html
E2BoWs: An End-to-End Bag-of-Words Model via Deep Convolutional Neural Network
- intro: ChinaMM 2017, image retrieval
- arxiv: https://arxiv.org/abs/1709.05903
Boosting
Deep Boosting
- intro: ICML 2014
- paper: http://www.cs.princeton.edu/~usyed/CortesMohriSyedICML2014.pdf
- github: https://github.com/google/deepboost
Deep Incremental Boosting
https://arxiv.org/abs/1708.03704
Bootstrap
Training Deep Neural Networks on Noisy Labels with Bootstrapping
ConvCSNet: A Convolutional Compressive Sensing Framework Based on Deep Learning
Compressive Sensing
ConvCSNet: A Convolutional Compressive Sensing Framework Based on Deep Learning
https://arxiv.org/abs/1801.10342
Perceptual Compressive Sensing
https://arxiv.org/abs/1802.00176
Full Image Recover for Block-Based Compressive Sensing
https://arxiv.org/abs/1802.00179
Conditional Random Fields
Deep Markov Random Field for Image Modeling
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1609.02036
- github: https://github.com/zhirongw/deep-mrf
Deep, Dense, and Low-Rank Gaussian Conditional Random Fields
DeepCRF: Neural Networks and CRFs for Sequence Labeling
- intro: A implementation of Conditional Random Fields (CRFs) with Deep Learning Method
- github: https://github.com/aonotas/deep-crf
Decision Tree
Deep Neural Decision Forests
- intro: ICCV 2015. Microsoft Research. ICCV’15 Marr Prize
- paper: http://research.microsoft.com/pubs/255952/ICCV15_DeepNDF_main.pdf
- slides: https://docs.google.com/presentation/d/1Ze7BAiWbMPyF0ax36D-aK00VfaGMGvvgD_XuANQW1gU/edit#slide=id.p
- github: https://github.com/chrischoy/fully-differentiable-deep-ndf-tf
- supplement: http://research.microsoft.com/pubs/255952/ICCV15_DeepNDF_suppl.pdf
- notes: http://pan.baidu.com/s/1jGRWem6
Neural Network and Decision Tree
Decision Forests, Convolutional Networks and the Models in-Between
- arxiv: http://arxiv.org/abs/1603.01250
- notes: http://blog.csdn.net/stdcoutzyx/article/details/50993124
Distilling a Neural Network Into a Soft Decision Tree
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1711.09784
- github(PyTorch): https://github.com//kimhc6028/soft-decision-tree
End-to-end Learning of Deterministic Decision Trees
https://arxiv.org/abs/1712.02743
Deep Neural Decision Trees
- intro: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Sweden
- arxiv: https://arxiv.org/abs/1806.06988
- github: https://github.com/wOOL/DNDT
Adaptive Neural Trees
- intro: ICML 2019
- intro: University College London & Imperial College London & Microsoft Research
- arxiv: https://arxiv.org/abs/1807.06699
- paper: http://proceedings.mlr.press/v97/tanno19a.html
- github(official): https://github.com/rtanno21609/AdaptiveNeuralTrees
Visualizing the decision-making process in deep neural decision forest
- intro: CVPR 2019 workshops on explainable AI
- arxiv: https://arxiv.org/abs/1904.09201
- github: https://github.com/Nicholasli1995/VisualizingNDF
NBDT: Neural-Backed Decision Trees
- project page: http://nbdt.alvinwan.com/
- arxiv: https://arxiv.org/abs/2004.00221
- github: https://github.com/alvinwan/neural-backed-decision-trees
Dictionary Learning
Greedy Deep Dictionary Learning
Sparse Factorization Layers for Neural Networks with Limited Supervision
Online Convolutional Dictionary Learning
https://arxiv.org/abs/1709.00106
Deep Dictionary Learning: A PARametric NETwork Approach
https://arxiv.org/abs/1803.04022
Deep Micro-Dictionary Learning and Coding Network
- intro: WACV 2018
- arxiv: https://arxiv.org/abs/1809.04185
Fisher Vectors
Backpropagation Training for Fisher Vectors within Neural Networks
Semi-supervised Fisher vector network
https://arxiv.org/abs/1801.04438
Gaussian Processes
Questions on Deep Gaussian Processes
Qs – Deep Gaussian Processes
Practical Learning of Deep Gaussian Processes via Random Fourier Features
Deep Learning with Gaussian Process
Doubly Stochastic Variational Inference for Deep Gaussian Processes
- arxiv: https://arxiv.org/abs/1705.08933
- github: https://github.com/thangbui/deepGP_approxEP
- github: https://github.com/ICL-SML/Doubly-Stochastic-DGP
Deep Gaussian Mixture Models
https://arxiv.org/abs/1711.06929
How Deep Are Deep Gaussian Processes?
https://arxiv.org/abs/1711.11280
Variational inference for deep Gaussian processes
- intro: NIPS workshop on Advances in Approximate Bayesian Inference 2017
- slide: http://adamian.github.io/talks/Damianou_NIPS17.pdf
Deep Gaussian Processes with Decoupled Inducing Inputs
- intro: University of Cambridge & University of Seville
- arxiv: https://arxiv.org/abs/1801.02939
Gaussian Process Behaviour in Wide Deep Neural Networks
- intro: University of Cambridge
- arxiv: https://arxiv.org/abs/1804.11271
- github: https://github.com/widedeepnetworks/widedeepnetworks
Differentiable Compositional Kernel Learning for Gaussian Processes
- intro: ICML 2018. University of Toronto
- arxiv: https://arxiv.org/abs/1806.04326
Deep Convolutional Networks as shallow Gaussian Processes
- intro: University of Cambridge
- arxiv: https://arxiv.org/abs/1808.05587
- github: https://github.com/rhaps0dy/convnets-as-gps
Deep convolutional Gaussian processes
- intro: Aalto university
- arxiv: https://arxiv.org/abs/1810.03052
- github: https://github.com/kekeblom/DeepCGP
Graph Convolutional Gaussian Processes
- intro: ICML 2019
- arxiv: https://arxiv.org/abs/1905.05739
Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
- intro: NeurIPS 2019
- arxiv: https://arxiv.org/abs/1910.12478
- github: https://github.com/thegregyang/GP4A
Graphical Models
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
- intro: NIPS 2017
- arxiv: https://arxiv.org/abs/1712.04120
GMM
DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model
- intro: ECCV 2018
- arxiv: https://arxiv.org/abs/1808.09211
HMM
Unsupervised Neural Hidden Markov Models
- intro: EMNLP 2016
- paper: http://www.isi.edu/natural-language/mt/neural-hmm16.pdf
- github: https://github.com/ketranm/neuralHMM
Histogram
Learnable Histogram: Statistical Context Features for Deep Neural Networks
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1804.09398
Kalman Filter
Deep Robust Kalman Filter
https://arxiv.org/abs/1703.02310
Kernel Methods
Kernel Methods for Deep Learning
- intro: NIPS 2009
- paper: https://papers.nips.cc/paper/3628-kernel-methods-for-deep-learning
- paper: http://cseweb.ucsd.edu/~saul/papers/nips09_kernel.pdf
Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1611.00336
- code: https://people.orie.cornell.edu/andrew/code/#SVDKL
A Deep Learning Approach To Multiple Kernel Fusion
Optimizing Kernel Machines using Deep Learning
- keywords: DKMO (Deep Kernel Machine Optimization)
- arxiv: https://arxiv.org/abs/1711.05374
Stacked Kernel Network
https://arxiv.org/abs/1711.09219
Deep Embedding Kernel
- intro: Kennesaw State University
- arxiv: https://arxiv.org/abs/1804.05806
Learning Explicit Deep Representations from Deep Kernel Networks
https://arxiv.org/abs/1804.11159
k-Nearest Neighbors
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
- intro: Pennsylvania State University
- arxiv: https://arxiv.org/abs/1803.04765
- arxiv-vanity: https://www.arxiv-vanity.com/papers/1803.04765/
LBP
Deep Local Binary Patterns
https://arxiv.org/abs/1711.06597
Local Binary Pattern Networks
- intro: local binary pattern networks or LBPNet
- arxiv: https://arxiv.org/abs/1803.07125
Neural Nearest Neighbors Networks
- intro: NIPS 2018
- arxiv: https://arxiv.org/abs/1810.12575
- github: https://github.com/visinf/n3net/
Deep Logistic Regression
Single-Label Multi-Class Image Classification by Deep Logistic Regression
- intro: AAAI 2019
- arxiv: https://arxiv.org/abs/1811.08400
Probabilistic Programming
Deep Probabilistic Programming with Edward
- intro: Columbia University & Adobe Research & Google
- poster: http://dustintran.com/papers/TranHoffmanMurphyBrevdoSaurousBlei2016_poster.pdf
SVM
Large-scale Learning with SVM and Convolutional for Generic Object Categorization
Convolutional Neural Support Vector Machines:Hybrid Visual Pattern Classifiers for Multi-robot Systems
Deep Learning using Linear Support Vector Machines
- intro: Workshop on Representational Learning, ICML 2013
- arxiv: https://arxiv.org/abs/1306.0239
- paper: http://deeplearning.net/wp-content/uploads/2013/03/dlsvm.pdf
- github: https://github.com/momer/deep-learning-faces
- code: https://code.google.com/p/deeplearning-faces/
Deep Support Vector Machines
- video: http://videolectures.net/roks2013_wiering_vector/
-
slides: http://www.esat.kuleuven.be/sista/ROKS2013/files/presentations/DSVM_ROKS_2013_WIERING.pdf Trusting SVM for Piecewise Linear CNNs
- intro: PL-CNNs
- arxiv: https://arxiv.org/abs/1611.02185
Random Forest
Towards the effectiveness of Deep Convolutional Neural Network based Fast Random Forest Classifier
Deep Forest: Towards An Alternative to Deep Neural Networks
- projetc: http://lamda.nju.edu.cn/code_gcForest.ashx
- arxiv: https://arxiv.org/abs/1702.08835
- github(official): https://github.com/kingfengji/gcForest
Forward Thinking: Building Deep Random Forests
Deep Regression Forests for Age Estimation
https://arxiv.org/abs/1712.07195
Deep Differentiable Random Forests for Age Estimation
https://arxiv.org/abs/1907.10665
Template Matching
QATM: Quality-Aware Template Matching For Deep Learning
- intro: CVPR 2019
- arxiv: https://arxiv.org/abs/1903.07254
- github(official, Tensorflow): https://github.com/cplusx/QATM