Published: 09 Oct 2015 Category: deep_learning

Types of RNN

1) Plain Tanh Recurrent Nerual Networks

2) Gated Recurrent Neural Networks (GRU)

3) Long Short-Term Memory (LSTM)


The Unreasonable Effectiveness of Recurrent Neural Networks

Understanding LSTM Networks

A Beginner’s Guide to Recurrent Networks and LSTMs


A Deep Dive into Recurrent Neural Nets


Exploring LSTMs


A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach

Long Short-Term Memory: Tutorial on LSTM Recurrent Networks


LSTM implementation explained


Recurrent Neural Networks Tutorial

Recurrent Neural Networks in DL4J


Learning RNN Hierarchies

Element-Research Torch RNN Tutorial for recurrent neural nets : let’s predict time series with a laptop GPU

RNNs in Tensorflow, a Practical Guide and Undocumented Features

Learning about LSTMs using Torch

Build a Neural Network (LIVE)

Deriving LSTM Gradient for Backpropagation


TensorFlow RNN Tutorial


RNN Training Tips and Tricks


Tips for Training Recurrent Neural Networks


A Tour of Recurrent Neural Network Algorithms for Deep Learning


Fundamentals of Deep Learning – Introduction to Recurrent Neural Networks


Essentials of Deep Learning : Introduction to Long Short Term Memory


How to build a Recurrent Neural Network in TensorFlow

How to build a Recurrent Neural Network in TensorFlow (1/7)


Using the RNN API in TensorFlow (2/7)


Using the LSTM API in TensorFlow (3/7)


Using the Multilayered LSTM API in TensorFlow (4/7)


Using the DynamicRNN API in TensorFlow (5/7)


Using the Dropout API in TensorFlow (6/7)


Unfolding RNNs

Unfolding RNNs: RNN : Concepts and Architectures

Unfolding RNNs II: Vanilla, GRU, LSTM RNNs from scratch in Tensorflow

Train RNN

On the difficulty of training Recurrent Neural Networks

A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

Batch Normalized Recurrent Neural Networks

Sequence Level Training with Recurrent Neural Networks

Training Recurrent Neural Networks (PhD thesis)

Deep learning for control using augmented Hessian-free optimization

Hierarchical Conflict Propagation: Sequence Learning in a Recurrent Deep Neural Network

Recurrent Batch Normalization

Batch normalized LSTM for Tensorflow

Optimizing Performance of Recurrent Neural Networks on GPUs

Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations

Explaining and illustrating orthogonal initialization for recurrent neural networks

Professor Forcing: A New Algorithm for Training Recurrent Networks

Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences

Tuning Recurrent Neural Networks with Reinforcement Learning (RL Tuner)

Capacity and Trainability in Recurrent Neural Networks

Large-Batch Training for LSTM and Beyond

Learn To Execute Programs

Learning to Execute

Neural Programmer-Interpreters

A Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive Control

Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data

Neural Random-Access Machines

Attention Models

Recurrent Models of Visual Attention

Recurrent Model of Visual Attention

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

A Neural Attention Model for Abstractive Sentence Summarization

Effective Approaches to Attention-based Neural Machine Translation

Generating Images from Captions with Attention

Attention and Memory in Deep Learning and NLP

Survey on the attention based RNN model and its applications in computer vision

Attention in Long Short-Term Memory Recurrent Neural Networks

How to Visualize Your Recurrent Neural Network with Attention in Keras


Generating Sequences With Recurrent Neural Networks

A Clockwork RNN

Unsupervised Learning of Video Representations using LSTMs

An Empirical Exploration of Recurrent Network Architectures

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

LSTM: A Search Space Odyssey

Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

A Critical Review of Recurrent Neural Networks for Sequence Learning

Visualizing and Understanding Recurrent Networks

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks

Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting

Grid Long Short-Term Memory

Depth-Gated LSTM

Deep Knowledge Tracing

Top-down Tree Long Short-Term Memory Networks

Improving performance of recurrent neural network with relu nonlinearity

Alternative structures for character-level RNNs

Long Short-Term Memory-Networks for Machine Reading

Lipreading with Long Short-Term Memory

Associative Long Short-Term Memory

Representation of linguistic form and function in recurrent neural networks

Architectural Complexity Measures of Recurrent Neural Networks

Easy-First Dependency Parsing with Hierarchical Tree LSTMs

Training Input-Output Recurrent Neural Networks through Spectral Methods

Sequential Neural Models with Stochastic Layers

Neural networks with differentiable structure

What You Get Is What You See: A Visual Markup Decompiler

Hybrid computing using a neural network with dynamic external memory

Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks

Dilated Recurrent Neural Networks

Excitation Backprop for RNNs


Recurrent Relational Networks for Complex Relational Reasoning

Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition

  • intro: University of Electronic Science and Technology of China & Brown University & University of Utah & XJERA LABS PTE.LTD
  • arxiv: https://arxiv.org/abs/1712.05134


Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks

Recurrent Memory Array Structures

Recurrent Highway Networks

DeepSoft: A vision for a deep model of software

Recurrent Neural Networks With Limited Numerical Precision

Hierarchical Multiscale Recurrent Neural Networks


LightRNN: Memory and Computation-Efficient Recurrent Neural Networks

Full-Capacity Unitary Recurrent Neural Networks

DeepCoder: Learning to Write Programs

shuttleNet: A biologically-inspired RNN with loop connection and parameter sharing

Tracking the World State with Recurrent Entity Networks

Robust LSTM-Autoencoders for Face De-Occlusion in the Wild

Simplified Gating in Long Short-term Memory (LSTM) Recurrent Neural Networks

The Statistical Recurrent Unit

Factorization tricks for LSTM networks

Bayesian Recurrent Neural Networks

Fast-Slow Recurrent Neural Networks

Visualizing LSTM decisions


Recurrent Additive Networks

Recent Advances in Recurrent Neural Networks

Grow and Prune Compact, Fast, and Accurate LSTMs



NeuralTalk (Deprecated): a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences

NeuralTalk2: Efficient Image Captioning code in Torch, runs on GPU

char-rnn in Blocks

Project: pycaffe-recurrent

Using neural networks for password cracking

torch-rnn: Efficient, reusable RNNs and LSTMs for torch

Deploying a model trained with GPU in Torch into JavaScript, for everyone to use

LSTM implementation on Caffe

JNN: Java Neural Network Library

LSTM-Autoencoder: Seq2Seq LSTM Autoencoder

RNN Language Model Variations

keras-extra: Extra Layers for Keras to connect CNN with RNN

Dynamic Vanilla RNN, GRU, LSTM,2layer Stacked LSTM with Tensorflow Higher Order Ops

PRNN: A fast implementation of recurrent neural network layers in CUDA

min-char-rnn: Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy

rnn: Recurrent Neural Network library for Torch7’s nn

word-rnn-tensorflow: Multi-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow

tf-char-rnn: Tensorflow implementation of char-rnn

translit-rnn: Automatic transliteration with LSTM

tf_lstm.py: Simple implementation of LSTM in Tensorflow in 50 lines (+ 130 lines of data generation and comments)

Handwriting generating with RNN

RecNet - Recurrent Neural Network Framework


Survey on Attention-based Models Applied in NLP


Survey on Advanced Attention-based Models


Online Representation Learning in Recurrent Neural Language Models


Fun with Recurrent Neural Nets: One More Dive into CNTK and TensorFlow


Materials to understand LSTM


Understanding LSTM and its diagrams


Persistent RNNs: 30 times faster RNN layers at small mini-batch sizes

Persistent RNNs: Stashing Recurrent Weights On-Chip

All of Recurrent Neural Networks


Rolling and Unrolling RNNs


Sequence prediction using recurrent neural networks(LSTM) with TensorFlow: LSTM regression using TensorFlow


Machines and Magic: Teaching Computers to Write Harry Potter

Crash Course in Recurrent Neural Networks for Deep Learning


Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras


Recurrent Neural Networks in Tensorflow

Written Memories: Understanding, Deriving and Extending the LSTM


Attention and Augmented Recurrent Neural Networks

Interpreting and Visualizing Neural Networks for Text Processing


A simple design pattern for recurrent deep learning in TensorFlow

RNN Spelling Correction: To crack a nut with a sledgehammer

Recurrent Neural Network Gradients, and Lessons Learned Therein

A noob’s guide to implementing RNN-LSTM using Tensorflow


Non-Zero Initial States for Recurrent Neural Networks

Interpreting neurons in an LSTM network


Optimizing RNN (Baidu Silicon Valley AI Lab)

Optimizing RNN performance

Optimizing RNNs with Differentiable Graphs


Awesome Recurrent Neural Networks - A curated list of resources dedicated to RNN

Jürgen Schmidhuber’s page on Recurrent Neural Networks


Reading and Questions

Are there any Recurrent convolutional neural network network implementations out there ?