Graph Convolutional Networks
Learning Convolutional Neural Networks for Graphs
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1605.05273
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
- arxiv: https://arxiv.org/abs/1606.09375
- github: https://github.com/mdeff/cnn_graph
- github: https://github.com/pfnet-research/chainer-graph-cnn
Semi-Supervised Classification with Graph Convolutional Networks
- arxiv: http://arxiv.org/abs/1609.02907
- github: https://github.com/tkipf/gcn
- blog: http://tkipf.github.io/graph-convolutional-networks/
Graph Based Convolutional Neural Network
- intro: BMVC 2016
- arxiv: http://arxiv.org/abs/1609.08965
How powerful are Graph Convolutions? (review of Kipf & Welling, 2016)
http://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/
Graph Convolutional Networks
DeepGraph: Graph Structure Predicts Network Growth
Deep Learning with Sets and Point Clouds
- intro: CMU
- arxiv: https://arxiv.org/abs/1611.04500
Deep Learning on Graphs
Robust Spatial Filtering with Graph Convolutional Neural Networks
https://arxiv.org/abs/1703.00792
Modeling Relational Data with Graph Convolutional Networks
https://arxiv.org/abs/1703.06103
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
- intro: Imperial College London
- arxiv: https://arxiv.org/abs/1703.02161
Deep Learning on Graphs with Graph Convolutional Networks
Deep Learning on Graphs with Keras
- intro:; Keras implementation of Graph Convolutional Networks
- github: https://github.com/tkipf/keras-gcn
Learning Graph While Training: An Evolving Graph Convolutional Neural Network
https://arxiv.org/abs/1708.04675
Graph Attention Networks
- intro: ICLR 2018
- intro: University of Cambridge & Centre de Visio per Computador, UAB & Montreal Institute for Learning Algorithms
- project page: http://petar-v.com/GAT/
- arxiv: https://arxiv.org/abs/1710.10903
- github: https://github.com/PetarV-/GAT
Residual Gated Graph ConvNets
https://arxiv.org/abs/1711.07553
Probabilistic and Regularized Graph Convolutional Networks
- intro: CMU
- arxiv: https://arxiv.org/abs/1803.04489
Videos as Space-Time Region Graphs
https://arxiv.org/abs/1806.01810
Relational inductive biases, deep learning, and graph networks
- intro: DeepMind & Google Brain & MIT & University of Edinburgh
- arxiv: https://arxiv.org/abs/1806.01261
Can GCNs Go as Deep as CNNs?
- project: https://sites.google.com/view/deep-gcns
- arxiv: https://arxiv.org/abs/1904.03751
- slides: https://docs.google.com/presentation/d/1L82wWymMnHyYJk3xUKvteEWD5fX0jVRbCbI65Cxxku0/edit#slide=id.p
- github(official, TensorFlow): https://github.com/lightaime/deep_gcns
GMNN: Graph Markov Neural Networks
- intro: ICML 2019
- ariv: https://arxiv.org/abs/1905.06214
- github: https://github.com/DeepGraphLearning/GMNN
DeepGCNs: Making GCNs Go as Deep as CNNs
- intro: ICCV 2019 Oral
- arxiv: https://arxiv.org/abs/1910.06849
- github: https://github.com/lightaime/deep_gcns_torch
- github: https://github.com/lightaime/deep_gcns
Rethinking pooling in graph neural networks
- intro: NeurIPS 2020
- arxiv: https://arxiv.org/abs/2010.11418