Fun With Deep Learning
Painting
Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting
- intro: ICML 2012
- arxiv: https://arxiv.org/abs/1206.4634
Emoji
Brewing EmojiNet
- blog: http://engineering.curalate.com/2016/01/20/emojinet.html
- website: https://emojini.curalate.com/
Image2Emoji: Zero-shot Emoji Prediction for Visual Media
Teaching Robots to Feel: Emoji & Deep Learning 👾 💭 💕
- blog: http://getdango.com/emoji-and-deep-learning.html
- app: https://play.google.com/store/apps/details?id=co.dango.emoji.gif
Text input with relevant emoji sorted with deeplearning
- homepage: http://codepen.io/Idlework/pen/xOgGqM
Sketch
Sketch-a-Net that Beats Humans
- project page: http://www.eecs.qmul.ac.uk/~tmh/downloads.html
- arxiv: http://arxiv.org/abs/1501.07873
- paper: http://www.eecs.qmul.ac.uk/~tmh/papers/yu2015sketchanet.pdf
- code: http://www.eecs.qmul.ac.uk/~tmh/downloads/SketchANet_Code.zip
How Do Humans Sketch Objects?
- project page: http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
- paper: http://cybertron.cg.tu-berlin.de/eitz/pdf/2012_siggraph_classifysketch.pdf
- github: https://github.com/Zebreu/SketchingAI
- gitxiv: http://gitxiv.com/posts/ZBCxEc9g3Fg5xCQ6n/sketchingai
Learning to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup (SIGGRAPH 2016)
- homepage: http://hi.cs.waseda.ac.jp/~esimo/en/research/sketch/
- paper: http://hi.cs.waseda.ac.jp/~esimo/publications/SimoSerraSIGGRAPH2016.pdf
Convolutional Sketch Inversion
- arxiv: http://arxiv.org/abs/1606.03073
- review: https://www.technologyreview.com/s/601684/machine-vision-algorithm-learns-to-transform-hand-drawn-sketches-into-photorealistic-images/
- review: https://techcrunch.com/2016/07/24/researchers-use-neural-networks-to-turn-face-sketches-into-photos/
Sketch Me That Shoe (CVPR 2016)
- project page: http://www.eecs.qmul.ac.uk/~qian/Project_cvpr16.html
- paper: http://www.eecs.qmul.ac.uk/~qian/SketchMeThatShoe.pdf
- github: https://github.com/seuliufeng/DeepSBIR
Mastering Sketching: Adversarial Augmentation for Structured Prediction
- keywords: Sketch Simplification
- project page: http://hi.cs.waseda.ac.jp/~esimo/en/research/sketch_master/
- arxiv: https://arxiv.org/abs/1703.08966
- github: https://github.com/bobbens/sketch_simplification
SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis
- intro: Georgia Institute of Technology
- arxiv: https://arxiv.org/abs/1801.02753
Image Colorization
Deep Colorization
Learning Large-Scale Automatic Image Colorization
Learning Representations for Automatic Colorization
- homepage: http://people.cs.uchicago.edu/~larsson/colorization/
- arxiv: http://arxiv.org/abs/1603.06668
- github: https://github.com/gustavla/autocolorize
Colorful Image Colorization
- intro: ECCV 2016
- project page: http://richzhang.github.io/colorization/
- arxiv: http://arxiv.org/abs/1603.08511
- github: https://github.com/richzhang/colorization
- demo: http://demos.algorithmia.com/colorize-photos/
- github: https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/Colorful github(Tensorflow): https://github.com/nilboy/colorization-tf
Colorising Black & White Photos using Deep Learning
https://hackernoon.com/colorising-black-white-photos-using-deep-learning-4da22a05f531
Automatic Colorization (Tensorflow + VGG)
colornet: Neural Network to colorize grayscale images
https://github.com/pavelgonchar/colornet
Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification (SIGGRAPH 2016)
- homepage: http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/
- paper: http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/data/colorization_sig2016.pdf
- github(Torch7): https://github.com/satoshiiizuka/siggraph2016_colorization
Convolutional autoencoder to colorize greyscale images
Image-Color: A deep learning approach to colorizing images
Creating an artificial artist: Color your photos using Neural Networks
Paints Chainer: line drawing colorization using chainer
Unsupervised Diverse Colorization via Generative Adversarial Networks
(DE)^2 CO: Deep Depth Colorization
https://arxiv.org/abs/1703.10881
A Neural Representation of Sketch Drawings
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1704.03477
Real-Time User-Guided Image Colorization with Learned Deep Priors
- intro: SIGGRAPH 2017
- project page: https://richzhang.github.io/ideepcolor/
- arxiv: https://arxiv.org/abs/1705.02999
- github(official, Caffe): https://github.com/junyanz/interactive-deep-colorization
PixColor: Pixel Recursive Colorization
- intro: Google Research
- arxiv: https://arxiv.org/abs/1705.07208
cGAN-based Manga Colorization Using a Single Training Image
- intro: University of Tokyo
- arxiv: https://arxiv.org/abs/1706.06918
Interactive Deep Colorization With Simultaneous Global and Local Inputs
https://arxiv.org/abs/1801.09083
Image Colorization with Generative Adversarial Networks
https://arxiv.org/abs/1803.05400
Learning to Color from Language
- intro: Allen Institute of Artificial Intelligence & University of Massachusetts
- arxiv: https://arxiv.org/abs/1804.06026
Deep Exemplar-based Colorization
- intro: Siggraph 2018
- arxiv: https://arxiv.org/abs/1807.06587
Pixel-level Semantics Guided Image Colorization
https://arxiv.org/abs/1808.01597
User-Guided Deep Anime Line Art Colorization with Conditional Adversarial Networks
- intro: 2018 ACM Multimedia Conference (MM ‘18)
- arxiv: https://arxiv.org/abs/1808.03240
Pixelated Semantic Colorization
https://arxiv.org/abs/1901.10889
Colorization Transformer
- intro: ICLR 2021
- intro: Google Research, Brain Team
- arxiv: https://arxiv.org/abs/2102.04432
- openreview: https://openreview.net/forum?id=5NA1PinlGFu
- github: https://github.com/google-research/google-research/tree/master/coltran
Sounds
Visually Indicated Sounds
- project page: http://vis.csail.mit.edu/
- arxiv: http://arxiv.org/abs/1512.08512
Music
GRUV: Algorithmic Music Generation using Recurrent Neural Networks
DeepHear - Composing and harmonizing music with neural networks
- website: http://web.mit.edu/felixsun/www/neural-music.html
- github: https://github.com/fephsun/neuralnetmusic
Using AutoHarp and a Character-Based RNN to Create MIDI Drum Loops
Musical Audio Synthesis Using Autoencoding Neural Nets
- paper: http://www.cs.dartmouth.edu/~sarroff/papers/sarroff2014a.pdf
- github: https://github.com/woodshop/deepAutoController/tree/icmc_smc_2014
- video: https://vimeo.com/121827215
sound-rnn: Generating sound using recurrent neural networks
- github: https://github.com/johnglover/sound-rnn
- blog: http://www.johnglover.net/blog/generating-sound-with-rnns.html
Using LSTM Recurrent Neural Networks for Music Generation (Project for AI Prac Fall 2015 at Cornell)
- youtube: https://www.youtube.com/watch?v=aSr8_QQYpYM
- video: http://video.weibo.com/show?fid=1034:4be01d679bb1a68a634fe0f589caa779
Visually Indicated Sounds (MIT. 2015)
Training a Recurrent Neural Network to Compose Music
LSTM Realbook
- blog: https://keunwoochoi.wordpress.com/2016/02/19/lstm-realbook/
- github: https://github.com/keunwoochoi/lstm_real_book
LSTMetallica: Generation drum tracks by learning the drum tracks of 60 Metallica songs
deepjazz: Deep learning driven jazz generation using Keras & Theano!
- homepage: https://jisungk.github.io/deepjazz/
- github:https://github.com/jisungk/deepjazz
Magenta: Music and Art Generation with Machine Intelligence
- homepage: http://magenta.tensorflow.org/
- github: https://github.com/tensorflow/magenta
Music Transcription with Convolutional Neural Networks
- blog: https://www.lunaverus.com/cnn
- download: https://www.lunaverus.com/download
Long Short-Term Memory Recurrent Neural Network Architectures for Generating Music and Japanese Lyrics
BachBot: Use deep learning to generate and harmonize music in the style of Bach
- intro: BachBot is a research project utilizing long short term memory (LSTMs) to generate Bach compositions
- homepage: http://bachbot.com/
- github: https://github.com/feynmanliang/bachbot
Generate Music in TensorFlow
- youtube: https://www.youtube.com/watch?v=ZE7qWXX05T0
- github: https://github.com/llSourcell/Music_Generator_Demo
Generate new lyrics in the style of any artist using LSTMs and TensorFlow
sound-GAN: Generative Adversial Network for music composition
Analyzing Six Deep Learning Tools for Music Generation
- intro: Magenta / DeepJazz / BachBot / FlowMachines / WaveNet / GRUV
- blog: http://www.asimovinstitute.org/notes-vs-waves/
WIMP2: Creating Music with AI: Highlights of Current Research
Song From PI: A Musically Plausible Network for Pop Music Generation
- paper: http://openreview.net/pdf?id=ByBwSPcex
- project page: http://www.cs.toronto.edu/songfrompi/
Grammar Argumented LSTM Neural Networks with Note-Level Encoding for Music Composition
用TensorFlow生成周杰伦歌词
- blog: http://leix.me/2016/11/28/tensorflow-lyrics-generation/
- github: https://github.com/leido/char-rnn-cn
Hip-Hop - Generating lyrics with RNNs
Metis Final Project: Music Composition with LSTMs
http://blog.naoya.io/metis-final-project-music-composition-with-lstms/
Neural Translation of Musical Style
- blog: http://imanmalik.com/cs/2017/06/05/neural-style.html
- github: https://github.com/imalikshake/StyleNet
Poetry
NeuralSnap: Generates poetry from images using convolutional and recurrent neural networks
Generating Chinese Classical Poems with RNN Encoder-Decoder
Chinese Poetry Generation with Planning based Neural Network
- intro: COLING 2016. University of Science and Technology of China & Baidu
- arxiv: https://arxiv.org/abs/1610.09889
- blog: http://freecoder.me/archives/213.html
Weiqi (Go)
Teaching Deep Convolutional Neural Networks to Play Go
Move Evaluation in Go Using Deep Convolutional Neural Networks(Google DeepMind, Google Brain)
Training Deep Convolutional Neural Networks to Play Go
Computer Go Research - The Challenges Ahead (Martin Müller. IEEE CIG 2015)
GoCNN: Using CNN for Go (Weiqi/Baduk) board evaluation with tensorflow
DarkGo: Go in Darknet
BetaGo: Go bots for the people
- homepage: http://maxpumperla.github.io/betago/
- github: https://github.com/maxpumperla/betago
Deep Learning and the Game of Go
- book: https://www.manning.com/books/deep-learning-and-the-game-of-go
- github: https://github.com//maxpumperla/deep_learning_and_the_game_of_go
DarkForest
Better Computer Go Player with Neural Network and Long-term Prediction (Facebook AI Research)
- arxiv: http://arxiv.org/abs/1511.06410
- github: https://github.com/facebookresearch/darkforestGo
- MIT tech review: http://www.technologyreview.com/view/544181/how-facebooks-ai-researchers-built-a-game-changing-go-engine/
AlphaGo
Mastering the game of Go with deep neural networks and tree search
- intro: AlphaGo. Google DeepMind
- homepage: http://www.deepmind.com/alpha-go.html
- paper: https://storage.googleapis.com/deepmind-data/assets/papers/deepmind-mastering-go.pdf
- naturep page: http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
- paper: https://gogameguru.com/i/2016/03/deepmind-mastering-go.pdf
- slides: http://www.bioinfo.org.cn/~casp/temp/alphago_slides.pdf
- blog: http://www.furidamu.org/blog/2016/01/26/mastering-the-game-of-go-with-deep-neural-networks-and-tree-search/
- blog(“AlphaGo: From Intuitive Learning to Holistic Knowledge”): https://caminao.wordpress.com/2016/02/01/alphago/
- github: https://github.com/Rochester-NRT/AlphaGo
AlphaGo Teach
- intro: Let the AlphaGo Teaching Tool help you find new and creative ways of playing Go
- homepage: https://alphagoteach.deepmind.com/
AlphaGo的分析
- intro: by 田渊栋
- blog: http://zhuanlan.zhihu.com/yuandong/20607684
How Alphago Works
- slides: http://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works
- slides: http://pan.baidu.com/s/1qXwagGW
AlphaGo in Depth
- intro: by Mark Chang
- slides: http://www.slideshare.net/ckmarkohchang/alphago-in-depth?qid=283ab3bc-7d04-4e14-a205-b0b671ca4099
- mirror: https://pan.baidu.com/s/1i5JNeRj
Leela
- intro: Leela is a strong Go playing program combining advances in Go programming and further original research into a small, easy to use graphical interface.
- homepage: https://sjeng.org/leela.html
Mastering the game of Go without human knowledge
- nature page: http://www.nature.com/nature/journal/v550/n7676/full/nature24270.html
- paper: https://deepmind.com/documents/119/agz_unformatted_nature.pdf
- notes: https://blog.acolyer.org/2017/11/17/mastering-the-game-of-go-without-human-knowledge/
Computer Go & AlphaGo Zero
- youtube: https://www.youtube.com/watch?v=6fKG4wJ7uBk
- mirror: https://www.bilibili.com/video/av16428694/
- slides: https://drive.google.com/file/d/1rmUyIitEmAtMUKdKEnlHRfmXtpyoxxey/view
AlphaZero: Mastering Games without Human Knowledge - NIPS 2017
- intro: Keynote by David Silver on AlphaGo, AlphaGo Zero and AlphaZero, at the 2017 NIPS Deep Reinforcement Learning Symposium, 6 Dec, Long Beach, CA
- youtube: https://www.youtube.com/watch?v=A3ekFcZ3KNw
- mirror: https://www.bilibili.com/video/av17210816/
PhoenixGo
- intro: Go AI program which implement the AlphaGo Zero paper
- github: https://github.com/Tencent/PhoenixGo
The future is here – AlphaZero learns chess
https://en.chessbase.com/post/the-future-is-here-alphazero-learns-chess
AlphaGo Zero Cheat Sheet
https://applied-data.science/static/main/res/alpha_go_zero_cheat_sheet.png
Chess
Giraffe: Using Deep Reinforcement Learning to Play Chess
- intro: MSc thesis
- arxiv: http://arxiv.org/abs/1509.01549
Spawkfish: neural network based chess engine
- homepage: http://spawk.fish/
Chess position evaluation with convolutional neural network in Julia
Deep Learning for … Chess
- blog: http://blog.yhat.com/posts/deep-learning-chess.html
- github: https://github.com/erikbern/deep-pink
DeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess
- intro: Winner of Best Paper Award in ICANN 2016
- arxiv: https://arxiv.org/abs/1711.09667
- paper: http://www.cs.tau.ac.il/~wolf/papers/deepchess.pdf
- github: https://github.com/mr-press/DeepChess
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
- intro: DeepMind
- arxiv: https://arxiv.org/abs/1712.01815
Game
Learning Game of Life with a Convolutional Neural Network
Reinforcement Learning using Tensor Flow: A deep Q learning demonstration using Google Tensorflow
Poker-CNN: A Pattern Learning Strategy for Making Draws and Bets in Poker Games Using Convolutional Networks
- arxiv: http://arxiv.org/abs/1509.06731
- paper: http://colinraffel.com/publications/aaai2016poker.pdf
- github: https://github.com/moscow25/deep_draw
- slides: https://drive.google.com/file/d/0B5eOIUHA0khiMjN1YnEtZHMwams/view
- slides: http://pan.baidu.com/s/1nu5zpZ7
TorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games
- intro: Connecting Torch to StarCraft
- arxiv: https://arxiv.org/abs/1611.00625
- github: https://github.com/TorchCraft/TorchCraft
BlizzCon 2016 DeepMind and StarCraft II Deep Learning Panel Transcript
- part 1: http://starcraft.blizzplanet.com/blog/comments/blizzcon-2016-deepmind-and-starcraft-ii-deep-learning-panel-transcript
- part 2: http://starcraft.blizzplanet.com/blog/comments/blizzcon-2016-deepmind-and-starcraft-ii-deep-learning-panel-transcript/2
DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker
Gym StarCraft: StarCraft environment for OpenAI Gym, based on Facebook’s TorchCraft
- intro: Gym StarCraft is an environment bundle for OpenAI Gym. It is based on Facebook’s TorchCraft, which is a bridge between Torch and StarCraft for AI research.
- github: https://github.com/deepcraft/gym-starcraft
Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games
https://arxiv.org/abs/1703.10069
Learning Macromanagement in StarCraft from Replays using Deep Learning
- intro: CIG 2017. IT University of Copenhagen
- arxiv: https://arxiv.org/abs/1707.03743
Multi-platform Version of StarCraft: Brood War in a Docker Container: Technical Report
- intro: Czech Technical University in Prague
- arxiv: https://arxiv.org/abs/1801.02193
- gihtub: https://github.com/Games-and-Simulations/sc-docker
Macro action selection with deep reinforcement learning in StarCraft
- intro: Bilibili & Nanjing University
- arxiv: https://arxiv.org/abs/1812.00336
- github: https://github.com/Bilibili/LastOrder
DeepLeague
DeepLeague: leveraging computer vision and deep learning on the League of Legends mini map + giving away a dataset of over 100,000 labeled images to further esports analytics research
DeepLeague (Part 2): The Technical Details
- blog: https://medium.com/@farzatv/deepleague-part-2-the-technical-details-374439e7e09a
- github: https://github.com/farzaa/DeepLeague
Courses
Learning Machines
http://www.patrickhebron.com/learning-machines/
Learning Bit by Bit
https://itp.nyu.edu/varwiki/Syllabus/LearningBitbyBitS10
MACHINE LEARNING FOR MUSICIANS AND ARTISTS (Course opens January 2016)
https://www.kadenze.com/courses/machine-learning-for-musicians-and-artists/info
Machine learning for artists @ ITP-NYU, Spring 2016
- videos/lectures/course notes: http://ml4a.github.io/classes/itp-S16/
- index: http://ml4a.github.io/index/
- github: https://github.com/ml4a/ml4a.github.io
- notes: http://www.kdnuggets.com/2016/04/machine-learning-artists-video-lectures-notes.html
- blog: https://medium.com/@genekogan/machine-learning-for-artists-e93d20fdb097#.25w95beqb
Machine Learning for Artists @ OpenDot, November 2016
- homepage: http://ml4a.github.io/classes/opendot/
The Neural Aesthetic @ SchoolOfMa, Summer 2016
http://ml4a.github.io/classes/neural-aesthetic/
Blogs
Review of machine / deep learning in an artistic context
https://medium.com/@memoakten/machine-deep-learning-in-an-artistic-context-441f28774bcc#.gegpq99ag
Apprentice Work
https://www.technologyreview.com/s/600762/apprentice-work/
Exploring the Intersection of Art and Machine Intelligence
http://googleresearch.blogspot.jp/2016/02/exploring-intersection-of-art-and.html
Using machine learning to generate music
http://www.datasciencecentral.com/profiles/blogs/using-machine-learning-to-generate-music
art in the age of machine intelligence
https://medium.com/artists-and-machine-intelligence/what-is-ami-ccd936394a83#.hyt4ei9a9
Understanding Aesthetics with Deep Learning
https://devblogs.nvidia.com/parallelforall/understanding-aesthetics-deep-learning/
Go, Marvin Minsky, and the Chasm that AI Hasn’t Yet Crossed
blog: https://medium.com/backchannel/has-deepmind-really-passed-go-adc85e256bec#.inx8nfid0
A Return to Machine Learning
- intro: This post is aimed at artists and other creative people who are interested in a survey of recent developments in machine learning research that intersect with art and culture.
- blog: https://medium.com/@kcimc/a-return-to-machine-learning-2de3728558eb#.bp2b1ax2x
Resources
Music, Art and Machine Intelligence Workshop 2016