Deep Learning Frameworks
Amazon DSSTNE
Amazon DSSTNE: Deep Scalable Sparse Tensor Network Engine
- intro: Deep Scalable Sparse Tensor Network Engine (DSSTNE) is an Amazon developed library for building Deep Learning (DL) machine learning (ML) models
- github: https://github.com/amznlabs/amazon-dsstne
Apache SINGA
- project-website: http://singa.incubator.apache.org/
- github: https://github.com/apache/incubator-singa
- paper: http://www.comp.nus.edu.sg/~ooibc/singaopen-mm15.pdf
- paper: http://www.comp.nus.edu.sg/~ooibc/singa-tomm.pdf
Blocks
Blocks: A Theano framework for building and training neural networks
Blocks and Fuel: Frameworks for deep learning
BrainCore
BrainCore: The iOS and OS X neural network framework
https://github.com/aleph7/BrainCore
Brainstorm
Brainstorm: Fast, flexible and fun neural networks
Caffe
Caffe: Convolutional Architecture for Fast Feature Embedding
- github: https://github.com/BVLC/caffe
- paper: http://arxiv.org/abs/1408.5093
- tutorial: http://tutorial.caffe.berkeleyvision.org/
- slides: http://vision.stanford.edu/teaching/cs231n/slides/caffe_tutorial.pdf
- slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/Caffe/caffe_tutorial.pdf
- caffe-doc: http://caffe.berkeleyvision.org/doxygen/index.html
- tutorials(“CAFFE with CUDA”): http://pan.baidu.com/s/1i4kmpyH
OpenCL Caffe
- intro: an experimental, community-maintained branch
- github: https://github.com/BVLC/caffe/tree/opencl
Caffe on both Linux and Windows
ApolloCaffe: a fork of Caffe that supports dynamic networks
- homepage: http://apollocaffe.com/
- github: http://github.com/Russell91/apollocaffe
fb-caffe-exts: Some handy utility libraries and tools for the Caffe deep learning framework
- intro: fb-caffe-exts is a collection of extensions developed at FB while using Caffe in (mainly) production scenarios.
- github: https://github.com/facebook/fb-caffe-exts
Caffe-Android-Lib: Porting caffe to android platform
caffe-android-demo: An android caffe demo app exploiting caffe pre-trained ImageNet model for image classification
Caffe.js: Run Caffe models in the browser using ConvNetJS
Intel Caffe
- intro: This fork of BVLC/Caffe is dedicated to improving performance of this deep learning framework when running on CPU, in particular Intel® Xeon processors (HSW+) and Intel® Xeon Phi processors
- github https://github.com/intel/caffe
NVIDIA Caffe
https://github.com/NVIDIA/caffe
Mini-Caffe
- intro: Minimal runtime core of Caffe, Forward only, GPU support and Memory efficiency.
- github: https://github.com/luoyetx/mini-caffe
Caffe on Mobile Devices
- intro: Optimized (for size and speed) Caffe lib for iOS and Android with demo APP.
- github: https://github.com/solrex/caffe-mobile
CaffeOnACL
- intro: Using ARM Compute Library (NEON+GPU) to speed up caffe; Providing utilities to debug, profile and tune application performance
- github: https://github.com/OAID/caffeOnACL
Multi-GPU / MPI Caffe
Caffe with OpenMPI-based Multi-GPU support
- intro: A fork of Caffe with OpenMPI-based Multi-GPU (mainly data parallel) support for action recognition and more.
- github: https://github.com/yjxiong/caffe/tree/mem
mpi-caffe: Model-distributed Deep Learning with Caffe and MPI
- project page: https://computing.ece.vt.edu/~steflee/mpi-caffe.html
- github: https://github.com/steflee/mpi-caffe
Caffe-MPI for Deep Learning
- github: https://github.com/Caffe-MPI/Caffe-MPI.github.io
- slides: http://mug.mvapich.cse.ohio-state.edu/static/media/mug/presentations/2016/Caffe-MPI_A_Parallel_Framework_on_the_GPU_Clusters.pdf
Caffe Utils
Caffe-model
- intro: Python script to generate prototxt on Caffe, specially the inception_v3\inception_v4\inception_resnet\fractalnet
- github: https://github.com/soeaver/caffe-model
Caffe2
Caffe2: A New Lightweight, Modular, and Scalable Deep Learning Framework
- intro: Caffe2 is a deep learning framework made with expression, speed, and modularity in mind. It is an experimental refactoring of Caffe, and allows a more flexible way to organize computation.
- homepage: https://caffe2.ai/
- github https://github.com/caffe2/caffe2
- github https://github.com/Yangqing/caffe2
- model zoo: https://caffe2.ai/docs/zoo.html
- models: https://github.com/caffe2/models
CDNN2
CDNN2 - CEVA Deep Neural Network Software Framework
- intro: Accelerating the development of Artificial Intelligence and its deployment in Low-Power Embedded Systems
-
homepage: http://launch.ceva-dsp.com/cdnn2/
- blog: http://www.tomshardware.com/news/ceva-cdnn2-tensorflow-embedded-systems,32158.html
Chainer
Chainer: a neural network framework
- website: http://chainer.org/
- github: https://github.com/pfnet/chainer
- benchmark: http://chainer.readthedocs.org/en/latest/comparison.html
Introduction to Chainer: Neural Networks in Python
- blog: http://multithreaded.stitchfix.com/blog/2015/12/09/intro-to-chainer/
- github: https://github.com/stitchfix/Algorithms-Notebooks
CNTK
CNTK: Computational Network Toolkit
- github: https://github.com/Microsoft/CNTK
- book: http://research.microsoft.com/pubs/226641/CNTKBook-20160121.pdf
- tutorial: http://research.microsoft.com/en-us/um/people/dongyu/CNTK-Tutorial-NIPS2015.pdf
An Introduction to Computational Networks and the Computational Network Toolkit
http://research.microsoft.com/apps/pubs/?id=226641
ConvNetJS
ConvNetJS: Deep Learning in Javascript. Train Convolutional Neural Networks (or ordinary ones) in your browser
DeepBeliefSDK
DeepBeliefSDK: The SDK for Jetpac’s iOS, Android, Linux, and OS X Deep Belief image recognition framework
- github: https://github.com/jetpacapp/DeepBeliefSDK
- demo: https://github.com/jetpacapp/Jetpac-Deep-Belief-Demo-App
- demo: https://github.com/jetpacapp/Jetpac-Deep-Belief-Learner-Demo-App
DeepDetect
DeepDetect: Open Source API & Deep Learning Server
- webiste: http://www.deepdetect.com/
- github: https://github.com/beniz/deepdetect
Deeplearning4j (DL4J)
Deeplearning4j: Deep Learning for Java
- homepage: http://deeplearning4j.org/
- github: https://github.com/deeplearning4j/deeplearning4j
Deeplearning4j images for cuda and hadoop.
Deeplearning4J Examples
- intro: Deeplearning4j Examples (DL4J, DL4J Spark, DataVec)
- github: https://github.com/deeplearning4j/dl4j-examples
DeepLearningKit
DeepLearningKit: Open Source Deep Learning Framework for Apple’s tvOS, iOS and OS X
Tutorial — Using DeepLearningKit with iOS for iPhone and iPad
DeepSpark
DeepSpark: Deeplearning framework running on Spark
- github: https://github.com/deepspark/deepspark
- homepage: http://deepspark.snu.ac.kr/
- arxiv: http://arxiv.org/abs/1602.08191
DIGITS
DIGITS: the Deep Learning GPU Training System
- homepage: https://developer.nvidia.com/digits
- github: https://github.com/NVIDIA/DIGITS
dp
dp: A deep learning library for streamlining research and development using the Torch7 distribution
- github: https://github.com/nicholas-leonard/dp
- manual: https://dp.readthedocs.org/en/latest/
- manual: https://github.com/nicholas-leonard/dp/blob/master/doc/index.md
Dragon
Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework
DyNet
**DyNet: The Dynamic Neural Network Toolkit **
- paper: https://arxiv.org/abs/1701.03980
- github: https://github.com/clab/dynet
DyNet Benchmarks
IDLF
IDLF: The Intel® Deep Learning Framework
- website: https://01.org/zh/intel-deep-learning-framework?langredirect=1
- github: https://github.com/01org/idlf
Keras
Keras: Deep Learning library for Theano and TensorFlow
- github: https://github.com/fchollet/keras
- blog: http://blog.keras.io/introducing-keras-10.html
- docs: http://keras.io/getting-started/functional-api-guide/
MarcBS/keras fork
- github: https://github.com/MarcBS/keras
Hera: Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.
- github: https://github.com/jakebian/hera
Installing Keras for deep learning
Keras Applications - deep learning models that are made available alongside pre-trained weights
https://keras.io/applications/
Keras resources: Directory of tutorials and open-source code repositories for working with Keras, the Python deep learning library
Keras.js: Run trained Keras models in the browser, with GPU support
keras2cpp
- intro: This is a bunch of code to port Keras neural network model into pure C++.
- github: https://github.com/pplonski/keras2cpp
keras-cn: Chinese keras documents with more examples, explanations and tips.
Kerasify: Small library for running Keras models from a C++ application
https://github.com/moof2k/kerasify
Knet
Knet: Koç University deep learning framework
- intro: Knet (pronounced “kay-net”) is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators.
- github: https://github.com/denizyuret/Knet.jl
- doc: https://knet.readthedocs.org/en/latest/
Lasagne
Lasagne: Lightweight library to build and train neural networks in Theano
Leaf
Leaf: The Hacker’s Machine Learning Engine
- homepage: http://autumnai.github.io/leaf/leaf/index.html
- github: https://github.com/autumnai/leaf
- homepage: http://autumnai.com/leaf/book/leaf.html
- homepage(“The Hacker’s Machine Intelligence Platform”): http://autumnai.com/
LightNet
LightNet: A Versatile, Standalone and Matlab-based Environment for Deep Learning
MatConvNet
MatConvNet: CNNs for MATLAB
- homepage: http://www.vlfeat.org/matconvnet/
- github: https://github.com/vlfeat/matconvnet
Marvin
Marvin: A minimalist GPU-only N-dimensional ConvNet framework
- homepage: http://marvin.is/
- github: https://github.com/PrincetonVision/marvin
MatConvNet: CNNs for MATLAB
- homepage: http://www.vlfeat.org/matconvnet/
- pretianed models: http://www.vlfeat.org/matconvnet/pretrained/
Mocha.jl
Mocha.jl: Deep Learning for Julia
- homepage: http://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
- github: https://github.com/pluskid/Mocha.jl
MXNet
MXNet
- github: https://github.com/dmlc/mxnet
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems
MXNet Model Gallery: Pre-trained Models of DMLC Project
a short introduction to mxnet design and implementation (chinese)
- github: https://github.com/dmlc/mxnet/blob/master/doc/overview_chn.md
- github-issues: https://github.com/dmlc/mxnet/issues/797
Deep learning for hackers with MXnet (1) GPU installation and MNIST
https://no2147483647.wordpress.com/2015/12/07/deep-learning-for-hackers-with-mxnet-1/
mxnet_Efficient, Flexible Deep Learning Framework
Use Caffe operator in MXNet
Deep Learning in a Single File for Smart Devices
https://mxnet.readthedocs.org/en/latest/tutorial/smart_device.html
MXNet Pascal Titan X benchmark
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别
http://phunter.farbox.com/post/mxnet-tutorial1
用MXnet实战深度学习之二:Neural art
http://phunter.farbox.com/post/mxnet-tutorial2
Programming Models and Systems Design for Deep Learning
- video: http://research.microsoft.com/apps/video/default.aspx?id=262396
- video: http://pan.baidu.com/s/1mgSnj64
Awesome MXNet
- intro: This page contains a curated list of awesome MXnet examples, tutorials and blogs.
- github: https://github.com/dmlc/mxnet/blob/master/example/README.md
Getting Started with MXNet
https://indico.io/blog/getting-started-with-mxnet/
gtc_tutorial: MXNet Tutorial for NVidia GTC 2016
- report: http://on-demand.gputechconf.com/gtc/2016/video/S6853.html
- tutorial: http://on-demand.gputechconf.com/gtc/2016/video/L6143.html
- video: http://pan.baidu.com/s/1eS58Gue
- github: https://github.com/dmlc/mxnet-gtc-tutorial
MXNET Dependency Engine
MXNET是这样压榨深度学习的内存消耗的
WhatsThis-iOS: MXNet WhatThis Example for iOS
MXNET-MPI: Embedding MPI parallelism in Parameter Server Task Model for scaling Deep Learning
- intro: IBM T J Watson Research Center
- arxiv: https://arxiv.org/abs/1801.03855
ncnn
- intro: ncnn is a high-performance neural network inference framework optimized for the mobile platform
- github: https://github.com/Tencent/ncnn
neocortex.js
Run trained deep neural networks in the browser or node.js
- homepage: http://scienceai.github.io/neocortex/
- github: https://github.com/scienceai/neocortex
Neon
Neon: Nervana’s Python-based deep learning library
- website: http://neon.nervanasys.com/docs/latest/index.html
- github: https://github.com/NervanaSystems/neon
- website: https://www.nervanasys.com/learn/
Tools to convert Caffe models to neon’s serialization format
Nervana’s Deep Learning Course
- homepage: https://www.nervanasys.com/deep-learning-tutorials/
- github: https://github.com/NervanaSystems/neon_course
NNabla
NNabla - Neural Network Libraries by Sony
- intro: NNabla - Neural Network Libraries NNabla is a deep learning framework that is intended to be used for research, development and production. We aim it running everywhere like desktop PCs, HPC clusters, embedded devices and production servers.
- homepage: https://nnabla.org/
- github: https://github.com/sony/nnabla
OpenDeep
OpenDeep: a fully modular & extensible deep learning framework in Python
- intro: Modular & extensible deep learning framework built on Theano
- homepage: http://www.opendeep.org/
- github: https://github.com/vitruvianscience/opendeep
OpenNN
OpenNN - Open Neural Networks Library
- homepage: http://opennn.net/
- github: https://github.com/artelnics/opennn
Paddle
PaddlePaddle: PArallel Distributed Deep LEarning
- homepage: http://www.paddlepaddle.org/
- github: https://github.com/baidu/Paddle
- installation: http://www.paddlepaddle.org/doc/build/
基于Spark的异构分布式深度学习平台
http://geek.csdn.net/news/detail/58867
Petuum
Petuum: a distributed machine learning framework
- website: http://petuum.github.io/
- github: https://github.com/petuum/bosen
PlaidML
PlaidML: A framework for making deep learning work everywhere
- homepage: http://vertex.ai/
- github: https://github.com/plaidml/plaidml
Platoon
Platoon: Multi-GPU mini-framework for Theano
Poseidon
Poseidon: Distributed Deep Learning Framework on Petuum
Purine
Purine: A bi-graph based deep learning framework
- github: https://github.com/purine/purine2
- arxiv: http://arxiv.org/abs/1412.6249
PyTorch
PyTorch
Datasets, Transforms and Models specific to Computer Vision
https://github.com/pytorch/vision/
Convert torch to pytorch
https://github.com/clcarwin/convert_torch_to_pytorch
TensorFlow
TensorFlow
- website: http://tensorflow.org/
- github: https://github.com/tensorflow/tensorflow
- github: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/distributed_runtime
- tutorial: http://tensorflow.org/tutorials
- tutorial: https://github.com/nlintz/TensorFlow-Tutorials
- stackoverflow: https://stackoverflow.com/questions/tagged/tensorflow
- benchmark: https://github.com/soumith/convnet-benchmarks/issues/66
Benchmarks
- intro: A selection of image classification models were tested across multiple platforms to create a point of reference for the TensorFlow community
- homepage: https://www.tensorflow.org/performance/benchmarks
TensorDebugger (TDB)
TensorDebugger(TDB): Interactive, node-by-node debugging and visualization for TensorFlow
- github: https://github.com/ericjang/tdb
ofxMSATensorFlow: OpenFrameworks addon for Google’s data-flow graph based numerical computation / machine intelligence library TensorFlow.
TFLearn: Deep learning library featuring a higher-level API for TensorFlow
- homepage: http://tflearn.org/
- github: https://github.com/tflearn/tflearn
- examples: https://github.com/tflearn/tflearn/blob/0.1.0/examples/README.md
TensorFlow on Spark
TensorBoard
TensorFlow.jl: A Julia wrapper for the TensorFlow Python library
TensorLayer: Deep learning and Reinforcement learning library for TensorFlow
OpenCL support for TensorFlow
Pretty Tensor: Fluent Networks in TensorFlow
- github: https://github.com/google/prettytensor
- docs: https://github.com/google/prettytensor/blob/master/docs/pretty_tensor_top_level.md
- tutorials: https://github.com/google/prettytensor/tree/master/prettytensor/tutorial
Rust language bindings for TensorFlow
TensorFlow Ecosystem: Integration of TensorFlow with other open-source frameworks
Caffe to TensorFlow
- intro: Convert Caffe models to TensorFlow.
- github: https://github.com/ethereon/caffe-tensorflow
TensorFlow Mobile
https://www.tensorflow.org/mobile/
Papers
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
- arxiv: http://arxiv.org/abs/1603.04467
- whitepaper: http://download.tensorflow.org/paper/whitepaper2015.pdf
TensorFlow: A system for large-scale machine learning
TensorFlow Distributions
https://arxiv.org/abs/1711.10604
Tutorials
TensorFlow 官方文档中文版
- tutorial-zh: https://github.com/jikexueyuanwiki/tensorflow-zh
- homepage: http://wiki.jikexueyuan.com/project/tensorflow-zh/
Theano
Theano
- website: http://deeplearning.net/software/theano/index.html
- github: https://github.com/Theano/Theano
Theano-Tutorials: Bare bones introduction to machine learning from linear regression to convolutional neural networks using Theano
Theano: A Python framework for fast computation of mathematical expressions
Configuring Theano For High Performance Deep Learning
http://www.johnwittenauer.net/configuring-theano-for-high-performance-deep-learning/
Theano: a short practical guide
- slides: http://folinoid.com/show/theano/
Ian Goodfellow’s Tutorials on Theano
- slides: http://pan.baidu.com/s/1slbzhF3#path=%252F%25E6%2588%2591%25E7%259A%2584%25E5%2588%2586%25E4%25BA%25AB%252F201604%252FIan%2520Goodfellow’s%2520Tutorials%2520on%2520Theano
- github(“theano_exercises”): https://github.com/goodfeli/theano_exercises
Plato: A library built on top of Theano
- github: https://github.com/petered/plato
- tutorial: https://rawgit.com/petered/plato/master/plato_tutorial.html
Theano Windows Install Guide
Theano-MPI: a Theano-based Distributed Training Framework
tiny-dnn (tiny-cnn)
tiny-dnn: A header only, dependency-free deep learning framework in C++11
- inrtro: tiny-dnn is a C++11 implementation of deep learning. It is suitable for deep learning on limited computational resource, embedded systems and IoT devices.
- github: https://github.com/tiny-dnn/tiny-dnn
- github: https://github.com/nyanp/tiny-cnn
Deep learning with C++ - an introduction to tiny-dnn
Torch
Torch
- website: http://torch.ch/
- github: https://github.com/torch/torch7
- cheatsheet: https://github.com/torch/torch7/wiki/Cheatsheet
- tutorials(“Getting started with Torch”): [http://torch.ch/docs/getting-started.html#](http://torch.ch/docs/getting-started.html#)
loadcaffe: Load Caffe networks in Torch7
Applied Deep Learning for Computer Vision with Torch
- homepage: https://github.com/soumith/cvpr2015
pytorch: Python wrappers for torch and lua
Torch Toolbox: A collection of snippets and libraries for Torch
cltorch: a Hardware-Agnostic Backend for the Torch Deep Neural Network Library, Based on OpenCL
Torchnet: An Open-Source Platform for (Deep) Learning Research
- paper: https://lvdmaaten.github.io/publications/papers/Torchnet_2016.pdf
- github: https://github.com/torchnet/torchnet
THFFmpeg: Torch bindings for FFmpeg (reading videos only)
caffegraph: Load Caffe networks in Torch7 using nngraph
Optimized-Torch: Intel Torch is dedicated to improving Torch performance when running on CPU
- intro: Intel Torch gets 4.66x speedup using the convnet-benchmarks which includes AlexNet,VGG-E,GoogLenet,ResidualNet
- github: https://github.com/xhzhao/optimized-torch
- benchmark: https://github.com/xhzhao/Optimized-Torch-benchmark
Torch Video Tutorials
Torch in Action
VELES
VELES: Distributed platform for rapid Deep learning application development
- website: https://velesnet.ml/
- github: https://github.com/Samsung/veles
- workflow: https://velesnet.ml/forge/forge.html
WebDNN
WebDNN: Fastest DNN Execution Framework on Web Browser
- homepage: https://mil-tokyo.github.io/webdnn/
- github: https://github.com/mil-tokyo/webdnn
Yann
Yann: Yet Another Neural Network Toolbox
- intro: It is a toolbox for building and learning convolutional neural networks, built on top of theano
- github: https://github.com/ragavvenkatesan/yann
- docs: http://yann.readthedocs.io/en/master/
Benchmarks
Easy benchmarking of all publicly accessible implementations of convnets
https://github.com/soumith/convnet-benchmarks
Stanford DAWN Deep Learning Benchmark (DAWNBench) - An End-to-End Deep Learning Benchmark and Competition
http://dawn.cs.stanford.edu/benchmark/index.html
Tutorials
Deep Learning Implementations and Frameworks (DLIF)
- tutorial: https://sites.google.com/site/dliftutorial/
- github: https://github.com/delta2323/DLIF-tutorial
Papers
Comparative Study of Deep Learning Software Frameworks
- intro: Caffe / Neon / TensorFlow / Theano / Torch
- arxiv: http://arxiv.org/abs/1511.06435
- github: https://github.com/DL-Benchmarks/DL-Benchmarks
Benchmarking State-of-the-Art Deep Learning Software Tools
- intro: Caffe, CNTK, MXNet, TensorFlow, and Torch
- project page: http://dlbench.comp.hkbu.edu.hk/
- arxiv: http://arxiv.org/abs/1608.07249
Projects
TensorFuse: Common interface for Theano, CGT, and TensorFlow
DeepRosetta: An universal deep learning models conversor
Deep Learning Model Convertors
https://github.com/ysh329/deep-learning-model-convertor
References
Frameworks and Libraries for Deep Learning
http://creative-punch.net/2015/07/frameworks-and-libraries-for-deep-learning/
TensorFlow vs. Theano vs. Torch
https://github.com/zer0n/deepframeworks/blob/master/README.md
Evaluation of Deep Learning Toolkits
https://github.com/zer0n/deepframeworks/blob/master/README.md
Deep Machine Learning libraries and frameworks
Torch vs Theano
Deep Learning Software: NVIDIA Deep Learning SDK
https://developer.nvidia.com/deep-learning-software
A comparison of deep learning frameworks
- intro: Theano/CGT/Torch/MXNet
- gist: https://gist.github.com/bartvm/69adf7aad100d58831b0
- webo: http://weibo.com/p/1001603946281180481229
TensorFlow Meets Microsoft’s CNTK
Is there a case for still using Torch, Theano, Brainstorm, MXNET and not switching to TensorFlow?
- reddit: [https://www.reddit.com/r/MachineLearning/comments/47qh90/is_there_a_case_for_still_using_torch_theano/][https://www.reddit.com/r/MachineLearning/comments/47qh90/is_there_a_case_for_still_using_torch_theano/]
DL4J vs. Torch vs. Theano vs. Caffe vs. TensorFlow
http://deeplearning4j.org/compare-dl4j-torch7-pylearn.html
Popular Deep Learning Libraries
The simple example of Theano and Lasagne super power
Comparison of deep learning software
A Look at Popular Machine Learning Frameworks
5 Deep Learning Projects You Can No Longer Overlook
- keywords: Leaf / tiny-cnn / Layered / Brain / neon
- blog: http://www.kdnuggets.com/2016/07/five-deep-learning-projects-cant-overlook.html
Comparison of Deep Learning Libraries After Years of Use
- intro: Torch / MxNet / Theano / Caffe
- blog:http://www.erogol.com/comparison-deep-learning-libraries-years-use/
Deep Learning Part 1: Comparison of Symbolic Deep Learning Frameworks
- intro: Theano / TensorFlow / MXNET
- blog: http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html
Deep Learning Frameworks Compared
- youtube: https://www.youtube.com/watch?v=MDP9FfsNx60
- github: https://github.com/llSourcell/tensorflow_vs_theano
DL4J vs. Torch vs. Theano vs. Caffe vs. TensorFlow
https://deeplearning4j.org/compare-dl4j-torch7-pylearn.html
Deep Learning frameworks: a review before finishing 2016
The Anatomy of Deep Learning Frameworks
https://medium.com/@gokul_uf/the-anatomy-of-deep-learning-frameworks-46e2a7af5e47
Python Deep Learning Frameworks Reviewed
https://indico.io/blog/python-deep-learning-frameworks-reviewed/
Apple’s deep learning frameworks: BNNS vs. Metal CNN
http://machinethink.net/blog/apple-deep-learning-bnns-versus-metal-cnn/